Applying principal component analysis for multi-parameter failure prognosis and determination of remaining useful life (2021)
- Authors:
- USP affiliated authors: SOUZA, GILBERTO FRANCISCO MARTHA DE - EP ; SILVA, RENAN FAVARÃO DA - EP ; MELANI, ARTHUR HENRIQUE DE ANDRADE - EP ; MICHALSKI, MIGUEL ANGELO DE CARVALHO - EP
- Unidade: EP
- DOI: 10.1109/RAMS48097.2021.9605798
- Subjects: INDÚSTRIA 4.0; MANUTENÇÃO PREDITIVA; ELEMENTOS DE MÁQUINAS; CICLO DE VIDA; COMPONENTES PRINCIPAIS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Proceedings
- Conference titles: Annual Reliability and Maintainability Symposium
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MICHALSKI, Miguel Angelo De Carvalho et al. Applying principal component analysis for multi-parameter failure prognosis and determination of remaining useful life. 2021, Anais.. New York: Escola Politécnica, Universidade de São Paulo, 2021. Disponível em: https://doi.org/10.1109/RAMS48097.2021.9605798. Acesso em: 22 jan. 2026. -
APA
Michalski, M. A. D. C., Silva, R. F. da, Melani, A. H. de A., & Souza, G. F. M. de. (2021). Applying principal component analysis for multi-parameter failure prognosis and determination of remaining useful life. In Proceedings. New York: Escola Politécnica, Universidade de São Paulo. doi:10.1109/RAMS48097.2021.9605798 -
NLM
Michalski MADC, Silva RF da, Melani AH de A, Souza GFM de. Applying principal component analysis for multi-parameter failure prognosis and determination of remaining useful life [Internet]. Proceedings. 2021 ;[citado 2026 jan. 22 ] Available from: https://doi.org/10.1109/RAMS48097.2021.9605798 -
Vancouver
Michalski MADC, Silva RF da, Melani AH de A, Souza GFM de. Applying principal component analysis for multi-parameter failure prognosis and determination of remaining useful life [Internet]. Proceedings. 2021 ;[citado 2026 jan. 22 ] Available from: https://doi.org/10.1109/RAMS48097.2021.9605798 - A framework to automate fault detection and diagnosis based on moving window principal component analysis and Bayesian network
- A framework for in-service life extension of hydroelectric generation assets
- Applying an unsupervised machine learning method for defining maintenance significant items
- Remaining useful life estimation based on an adaptive approach of Autoregressive Integrated Moving Average (ARIMA)
- Fault detection and diagnosis based on unsupervised machine learning methods: a Kaplan turbine case study
- Failure Mode and Observability Analysis (FMOA): an FMEA-based method to support fault detection and diagnosis
- Identifying changes in degradation stages for an unsupervised fault prognosis method for engineering systems
- Reliability and risk centered maintenance: a novel method for supporting maintenance management
- A fault detection framework based on data-driven digital shadows
- Applying cluster analysis to support failure management policy selection in asset management: a hydropower plant case study
Informações sobre o DOI: 10.1109/RAMS48097.2021.9605798 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3279993.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
