Reconstruction of Voronoi diagrams in inverse problems [abstract] (2024)
- Authors:
- USP affiliated authors: BIRGIN, ERNESTO JULIAN GOLDBERG - IME ; SOUZA, DANILO RODRIGUES DE - IME
- Unidade: IME
- Subjects: PROBLEMAS INVERSOS; MÉTODOS NUMÉRICOS
- Language: Inglês
- Imprenta:
- Publisher: The Eurasian Association on Inverse Problems
- Publisher place: Malta
- Date published: 2024
- Conference titles: International Conference ”Inverse Problems: Modeling and Simulation
-
ABNT
BIRGIN, Ernesto Julian Goldberg e LAURAIN, Antoine e SOUZA, Danilo Rodrigues de. Reconstruction of Voronoi diagrams in inverse problems [abstract]. 2024, Anais.. Malta: The Eurasian Association on Inverse Problems, 2024. Disponível em: https://www.ipms-conference.org/ipms2024/images/Abstracts_e-Book_IPMS2024.pdf. Acesso em: 11 fev. 2026. -
APA
Birgin, E. J. G., Laurain, A., & Souza, D. R. de. (2024). Reconstruction of Voronoi diagrams in inverse problems [abstract]. In . Malta: The Eurasian Association on Inverse Problems. Recuperado de https://www.ipms-conference.org/ipms2024/images/Abstracts_e-Book_IPMS2024.pdf -
NLM
Birgin EJG, Laurain A, Souza DR de. Reconstruction of Voronoi diagrams in inverse problems [abstract] [Internet]. 2024 ;[citado 2026 fev. 11 ] Available from: https://www.ipms-conference.org/ipms2024/images/Abstracts_e-Book_IPMS2024.pdf -
Vancouver
Birgin EJG, Laurain A, Souza DR de. Reconstruction of Voronoi diagrams in inverse problems [abstract] [Internet]. 2024 ;[citado 2026 fev. 11 ] Available from: https://www.ipms-conference.org/ipms2024/images/Abstracts_e-Book_IPMS2024.pdf - Reconstruction of Voronoi diagrams in inverse potential problems
- Reconstruction of Voronoi diagrams: the case of inverse conductivity problems
- An augmented Lagrangian method with finite termination
- Packing circles within ellipses
- Spectral projected gradient and variable metric methods for optimization with linear inequalities
- Sparse Projected-Gradient Method As a Linear-Scaling Low-Memory Alternative to Diagonalization in Self-Consistent Field Electronic Structure Calculations
- The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems
- On acceleration schemes and the choice of subproblem’s constraints in augmented Lagrangian methods
- Penalizing simple constraints on augmented Lagrangian methods
- Dykstra’s algorithm and robust stopping criteria
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3213560.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
