Reconstruction of Voronoi diagrams in inverse problems [abstract] (2024)
- Authors:
- USP affiliated authors: BIRGIN, ERNESTO JULIAN GOLDBERG - IME ; SOUZA, DANILO RODRIGUES DE - IME
- Unidade: IME
- Subjects: PROBLEMAS INVERSOS; MÉTODOS NUMÉRICOS
- Language: Inglês
- Imprenta:
- Publisher: The Eurasian Association on Inverse Problems
- Publisher place: Malta
- Date published: 2024
- Conference titles: International Conference ”Inverse Problems: Modeling and Simulation
-
ABNT
BIRGIN, Ernesto Julian Goldberg e LAURAIN, Antoine e SOUZA, Danilo Rodrigues de. Reconstruction of Voronoi diagrams in inverse problems [abstract]. 2024, Anais.. Malta: The Eurasian Association on Inverse Problems, 2024. Disponível em: https://www.ipms-conference.org/ipms2024/images/Abstracts_e-Book_IPMS2024.pdf. Acesso em: 27 dez. 2025. -
APA
Birgin, E. J. G., Laurain, A., & Souza, D. R. de. (2024). Reconstruction of Voronoi diagrams in inverse problems [abstract]. In . Malta: The Eurasian Association on Inverse Problems. Recuperado de https://www.ipms-conference.org/ipms2024/images/Abstracts_e-Book_IPMS2024.pdf -
NLM
Birgin EJG, Laurain A, Souza DR de. Reconstruction of Voronoi diagrams in inverse problems [abstract] [Internet]. 2024 ;[citado 2025 dez. 27 ] Available from: https://www.ipms-conference.org/ipms2024/images/Abstracts_e-Book_IPMS2024.pdf -
Vancouver
Birgin EJG, Laurain A, Souza DR de. Reconstruction of Voronoi diagrams in inverse problems [abstract] [Internet]. 2024 ;[citado 2025 dez. 27 ] Available from: https://www.ipms-conference.org/ipms2024/images/Abstracts_e-Book_IPMS2024.pdf - Reconstruction of Voronoi diagrams: the case of inverse conductivity problems
- Reconstruction of Voronoi diagrams in inverse potential problems
- Augmented Lagrangian methods under the constant positive linear dependence constraint qualification
- Globally convergent inexact quasi-Newton methods for solving nonlinear systems
- Augmented Lagrangian methods under the constant positive linear dependence constraint qualification
- Augmented Lagrangian method with nonmonotone penalty parameters for constrained optimization
- Evaluating bound-constrained minimization software
- Sequential equality-constrained optimization for nonlinear programming
- Optimality properties of an Augmented Lagrangian method on infeasible problems
- On the application of an augmented Lagrangian algorithm to some portfolio problems
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3213560.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
