Reconstruction of Voronoi diagrams: the case of inverse conductivity problems (2025)
- Authors:
- USP affiliated authors: BIRGIN, ERNESTO JULIAN GOLDBERG - IME ; SOUZA, DANILO RODRIGUES DE - IME
- Unidade: IME
- DOI: 10.1088/1361-6420/adcb68
- Subjects: PROBLEMAS INVERSOS; PROBLEMAS DE CONTORNO; EQUAÇÕES DIFERENCIAIS PARCIAIS
- Keywords: Inverse conductivity problems; Non-smooth shape calculus; Voronoi diagrams; Optimization
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Inverse Problems
- ISSN: 0266-5611
- Volume/Número/Paginação/Ano: v. 41, n. 5, art. 055007, 43 p., 2025
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BIRGIN, Ernesto Julian Goldberg e LAURAIN, Antoine e SOUZA, Danilo Rodrigues de. Reconstruction of Voronoi diagrams: the case of inverse conductivity problems. Inverse Problems, v. 41, n. 5, p. 43 , 2025Tradução . . Disponível em: https://www.ime.usp.br/~egbirgin/publications/bls2024-conductivity.pdf. Acesso em: 11 fev. 2026. -
APA
Birgin, E. J. G., Laurain, A., & Souza, D. R. de. (2025). Reconstruction of Voronoi diagrams: the case of inverse conductivity problems. Inverse Problems, 41( 5), 43 . doi:10.1088/1361-6420/adcb68 -
NLM
Birgin EJG, Laurain A, Souza DR de. Reconstruction of Voronoi diagrams: the case of inverse conductivity problems [Internet]. Inverse Problems. 2025 ; 41( 5): 43 .[citado 2026 fev. 11 ] Available from: https://www.ime.usp.br/~egbirgin/publications/bls2024-conductivity.pdf -
Vancouver
Birgin EJG, Laurain A, Souza DR de. Reconstruction of Voronoi diagrams: the case of inverse conductivity problems [Internet]. Inverse Problems. 2025 ; 41( 5): 43 .[citado 2026 fev. 11 ] Available from: https://www.ime.usp.br/~egbirgin/publications/bls2024-conductivity.pdf - Reconstruction of Voronoi diagrams in inverse problems [abstract]
- Reconstruction of Voronoi diagrams in inverse potential problems
- An augmented Lagrangian method with finite termination
- Packing circles within ellipses
- Spectral projected gradient and variable metric methods for optimization with linear inequalities
- Sparse Projected-Gradient Method As a Linear-Scaling Low-Memory Alternative to Diagonalization in Self-Consistent Field Electronic Structure Calculations
- The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems
- On acceleration schemes and the choice of subproblem’s constraints in augmented Lagrangian methods
- Penalizing simple constraints on augmented Lagrangian methods
- Dykstra’s algorithm and robust stopping criteria
Informações sobre o DOI: 10.1088/1361-6420/adcb68 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
