Reconstruction of Voronoi diagrams in inverse potential problems (2024)
- Authors:
- USP affiliated authors: BIRGIN, ERNESTO JULIAN GOLDBERG - IME ; SOUZA, DANILO RODRIGUES DE - IME
- Unidade: IME
- DOI: 10.1051/cocv/2024072
- Subjects: PROBLEMAS INVERSOS; PROBLEMAS DE CONTORNO; EQUAÇÕES DIFERENCIAIS PARCIAIS
- Keywords: Inverse potential problem; non-smooth shape calculus; Voronoi diagrams; optimization
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: ESAIM: Control, Optimisation and Calculus of Variations
- ISSN: 1292-8119
- Volume/Número/Paginação/Ano: v. 30, artigo n. 85, p. 1-37, 2024
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BIRGIN, Ernesto Julian Goldberg e LAURAIN, Antoine e SOUZA, Danilo Rodrigues de. Reconstruction of Voronoi diagrams in inverse potential problems. ESAIM: Control, Optimisation and Calculus of Variations, v. 30, n. artigo 85, p. 1-37, 2024Tradução . . Disponível em: https://doi.org/10.1051/cocv/2024072. Acesso em: 11 fev. 2026. -
APA
Birgin, E. J. G., Laurain, A., & Souza, D. R. de. (2024). Reconstruction of Voronoi diagrams in inverse potential problems. ESAIM: Control, Optimisation and Calculus of Variations, 30( artigo 85), 1-37. doi:10.1051/cocv/2024072 -
NLM
Birgin EJG, Laurain A, Souza DR de. Reconstruction of Voronoi diagrams in inverse potential problems [Internet]. ESAIM: Control, Optimisation and Calculus of Variations. 2024 ; 30( artigo 85): 1-37.[citado 2026 fev. 11 ] Available from: https://doi.org/10.1051/cocv/2024072 -
Vancouver
Birgin EJG, Laurain A, Souza DR de. Reconstruction of Voronoi diagrams in inverse potential problems [Internet]. ESAIM: Control, Optimisation and Calculus of Variations. 2024 ; 30( artigo 85): 1-37.[citado 2026 fev. 11 ] Available from: https://doi.org/10.1051/cocv/2024072 - Reconstruction of Voronoi diagrams in inverse problems [abstract]
- Reconstruction of Voronoi diagrams: the case of inverse conductivity problems
- An augmented Lagrangian method with finite termination
- Packing circles within ellipses
- Spectral projected gradient and variable metric methods for optimization with linear inequalities
- Sparse Projected-Gradient Method As a Linear-Scaling Low-Memory Alternative to Diagonalization in Self-Consistent Field Electronic Structure Calculations
- The boundedness of penalty parameters in an augmented Lagrangian method with constrained subproblems
- On acceleration schemes and the choice of subproblem’s constraints in augmented Lagrangian methods
- Penalizing simple constraints on augmented Lagrangian methods
- Dykstra’s algorithm and robust stopping criteria
Informações sobre o DOI: 10.1051/cocv/2024072 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3234505_-_Reconstruction_... | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
