Evaluation of activated sludge settling characteristics from microscopy images with deep convolutional neural networks and transfer learning (2024)
- Authors:
- USP affiliated authors: BRUNO, ODEMIR MARTINEZ - IFSC ; SCABINI, LEONARDO FELIPE DOS SANTOS - IFSC
- Unidade: IFSC
- DOI: 10.1016/j.jwpe.2024.105692
- Subjects: APRENDIZADO COMPUTACIONAL; VISÃO COMPUTACIONAL; REDES NEURAIS; TRATAMENTO DE ÁGUA
- Keywords: Wastewater treatment plant; Filamentous bulking; Convolutional neural networks; Transfer learning; Microscopy images; Eigen-CAM
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Water Process Engineering
- ISSN: 2214-7144
- Volume/Número/Paginação/Ano: v. 64, p. 105692-1-105692-13, Jul. 2024
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
- Licença: other-oa
-
ABNT
BORZOOEI, Sina et al. Evaluation of activated sludge settling characteristics from microscopy images with deep convolutional neural networks and transfer learning. Journal of Water Process Engineering, v. 64, p. 105692-1-105692-13, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jwpe.2024.105692. Acesso em: 28 dez. 2025. -
APA
Borzooei, S., Scabini, L., Miranda, G. H. B., Daneshgar, S., Deblieck, L., Bruno, O. M., et al. (2024). Evaluation of activated sludge settling characteristics from microscopy images with deep convolutional neural networks and transfer learning. Journal of Water Process Engineering, 64, 105692-1-105692-13. doi:10.1016/j.jwpe.2024.105692 -
NLM
Borzooei S, Scabini L, Miranda GHB, Daneshgar S, Deblieck L, Bruno OM, Langhe PD, Baets BD, Nopens I, Torfs E. Evaluation of activated sludge settling characteristics from microscopy images with deep convolutional neural networks and transfer learning [Internet]. Journal of Water Process Engineering. 2024 ; 64 105692-1-105692-13.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1016/j.jwpe.2024.105692 -
Vancouver
Borzooei S, Scabini L, Miranda GHB, Daneshgar S, Deblieck L, Bruno OM, Langhe PD, Baets BD, Nopens I, Torfs E. Evaluation of activated sludge settling characteristics from microscopy images with deep convolutional neural networks and transfer learning [Internet]. Journal of Water Process Engineering. 2024 ; 64 105692-1-105692-13.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1016/j.jwpe.2024.105692 - IA desenvolvida na USP é a melhor do mundo para reconhecer texturas [Depoimento a Ivan Conterno]
- Artificial neural networks and complex networks: an integrative study of topological properties and pattern recognition
- Improving deep neural network random initialization through neuronal rewiring
- IFSC/USP desenvolve “RADAM”: IA para padrões complexos - Primeira no mundo: Uma IA que treina outra IA. [Depoimento à Rui Sintra]
- Structure and functioning of neural networks: the complex network properties of artificial neurons
- Local complex features learned by randomized neural networks for texture analysis
- Artificial neural networks and complex networks: an integrative study of topological properties and pattern recognition
- Spatio-spectral networks for color-texture analysis
- A complex network approach for fish species recognition based on otolith shape
- A web-based system to assess texture analysis methods and datasets
Informações sobre o DOI: 10.1016/j.jwpe.2024.105692 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3202171.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
