Artificial neural networks and complex networks: an integrative study of topological properties and pattern recognition (2019)
- Authors:
- USP affiliated authors: BRUNO, ODEMIR MARTINEZ - IFSC ; SCABINI, LEONARDO FELIPE DOS SANTOS - IFSC
- Unidade: IFSC
- Subjects: REDES COMPLEXAS; INTELIGÊNCIA ARTIFICIAL
- Language: Inglês
- Imprenta:
- Publisher: Universidade de São Paulo - USP, Instituto de Física de São Carlos - IFSC
- Publisher place: São Carlos
- Date published: 2019
- Source:
- Título: Book of abstracts
- Conference titles: Semana Integrada do Instituto de Física de São Carlos - SIFSC
-
ABNT
SCABINI, Leonardo Felipe dos Santos e BRUNO, Odemir Martinez. Artificial neural networks and complex networks: an integrative study of topological properties and pattern recognition. 2019, Anais.. São Carlos: Universidade de São Paulo - USP, Instituto de Física de São Carlos - IFSC, 2019. . Acesso em: 27 dez. 2025. -
APA
Scabini, L. F. dos S., & Bruno, O. M. (2019). Artificial neural networks and complex networks: an integrative study of topological properties and pattern recognition. In Book of abstracts. São Carlos: Universidade de São Paulo - USP, Instituto de Física de São Carlos - IFSC. -
NLM
Scabini LF dos S, Bruno OM. Artificial neural networks and complex networks: an integrative study of topological properties and pattern recognition. Book of abstracts. 2019 ;[citado 2025 dez. 27 ] -
Vancouver
Scabini LF dos S, Bruno OM. Artificial neural networks and complex networks: an integrative study of topological properties and pattern recognition. Book of abstracts. 2019 ;[citado 2025 dez. 27 ] - IA desenvolvida na USP é a melhor do mundo para reconhecer texturas [Depoimento a Ivan Conterno]
- Evaluation of activated sludge settling characteristics from microscopy images with deep convolutional neural networks and transfer learning
- Improving deep neural network random initialization through neuronal rewiring
- Structure and functioning of neural networks: the complex network properties of artificial neurons
- IFSC/USP desenvolve “RADAM”: IA para padrões complexos - Primeira no mundo: Uma IA que treina outra IA. [Depoimento à Rui Sintra]
- Local complex features learned by randomized neural networks for texture analysis
- Spatio-spectral networks for color-texture analysis
- A complex network approach for fish species recognition based on otolith shape
- A web-based system to assess texture analysis methods and datasets
- Randomized encoding ensemble: a new approach for texture representation
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
