Machine learning techniques for improving multiclass anomaly detection on conveyor belts (2024)
- Authors:
- Matos, Saulo Neves

- Coletti, Otavio Ferracioli

- Zimmer, Rafael
- Ugucioni Filho, Fernando
- Carvalho, Ricardo C. C. L. de
- Silva, Victor Rodrigues da
- Franco, Jorge Luiz
- Pinto, Thomas Vargas Barsante e

- Barros, Luiz Guilherme Dias de

- Ranieri, Caetano Mazzoni

- Lopes, Bruno Eduardo
- Silva, Diego Furtado

- Ueyama, Jó

- Pessin, Gustavo

- Matos, Saulo Neves
- USP affiliated authors: SILVA, DIEGO FURTADO - ICMC ; UEYAMA, JO - ICMC ; COLETTI, OTAVIO FERRACIOLI - ICMC ; ZIMMER, RAFAEL - ICMC ; UGUCIONI FILHO, FERNANDO - EESC ; SILVA, VICTOR RODRIGUES DA - ICMC ; FRANCO, JORGE LUIZ - ICMC ; MATOS, SAULO NEVES - ICMC ; BARROS, LUIZ GUILHERME DIAS DE - EESC ; RANIERI, CAETANO MAZZONI - ICMC
- Unidades: ICMC; EESC
- DOI: 10.1109/I2MTC60896.2024.10561167
- Subjects: APRENDIZADO COMPUTACIONAL; REDES NEURAIS; MANUTENÇÃO PREDITIVA; TRANSPORTADORES DE CORREIA
- Keywords: Inertial Measurement Unit; conveyor belt; anomaly detection; hybrid transformers; mining industry
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Piscataway
- Date published: 2024
- Source:
- Título: Proceedings
- Conference titles: IEEE International Instrumentation and Measurement Technology Conference - I2MTC
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
MATOS, Saulo Neves et al. Machine learning techniques for improving multiclass anomaly detection on conveyor belts. 2024, Anais.. Piscataway: IEEE, 2024. Disponível em: https://doi.org/10.1109/I2MTC60896.2024.10561167. Acesso em: 28 dez. 2025. -
APA
Matos, S. N., Coletti, O. F., Zimmer, R., Ugucioni Filho, F., Carvalho, R. C. C. L. de, Silva, V. R. da, et al. (2024). Machine learning techniques for improving multiclass anomaly detection on conveyor belts. In Proceedings. Piscataway: IEEE. doi:10.1109/I2MTC60896.2024.10561167 -
NLM
Matos SN, Coletti OF, Zimmer R, Ugucioni Filho F, Carvalho RCCL de, Silva VR da, Franco JL, Pinto TVB e, Barros LGD de, Ranieri CM, Lopes BE, Silva DF, Ueyama J, Pessin G. Machine learning techniques for improving multiclass anomaly detection on conveyor belts [Internet]. Proceedings. 2024 ;[citado 2025 dez. 28 ] Available from: https://doi.org/10.1109/I2MTC60896.2024.10561167 -
Vancouver
Matos SN, Coletti OF, Zimmer R, Ugucioni Filho F, Carvalho RCCL de, Silva VR da, Franco JL, Pinto TVB e, Barros LGD de, Ranieri CM, Lopes BE, Silva DF, Ueyama J, Pessin G. Machine learning techniques for improving multiclass anomaly detection on conveyor belts [Internet]. Proceedings. 2024 ;[citado 2025 dez. 28 ] Available from: https://doi.org/10.1109/I2MTC60896.2024.10561167 - Evaluating conveyor belt health with signal processing applied to inertial sensing
- An evaluation of iron ore characteristics through machine learning and 2-D LiDAR technology
- Incremental learning approaches for flood detection in dynamic river environments
- Artificial neural networks applied to time series for flood prediction
- Memory-based pruning of deep neural networks for IoT devices applied to flood detection
- Water level identification with laser sensors, inertial units, and machine learning
- Cascade proportional-integral control design and affordable instrumentation system for enhanced performance of electrolytic dry cells
- An exact method and a heuristic for last-mile delivery drones routing with centralized graph-based airspace control
- Proceedings of 21st National Meeting on Artificial and Computational Intelligence
- Closing the loop: enhancing industrial productivity through soft sensor
Informações sobre o DOI: 10.1109/I2MTC60896.2024.10561167 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3201957.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas