Cavity approach for the approximation of spectral density of graphs with heterogeneous structures (2024)
- Authors:
- USP affiliated authors: FUJITA, ANDRÉ - IME ; GUZMÁN, GROVER ENRIQUE CASTRO - IME
- Unidade: IME
- DOI: 10.1103/PhysRevE.109.034303
- Assunto: MÉTODO DE MONTE CARLO
- Language: Inglês
- Imprenta:
- Publisher: American Physical Society
- Publisher place: College Park
- Date published: 2024
- Source:
- Título: Physical Review E
- ISSN: 2470-0045
- Volume/Número/Paginação/Ano: v. 109, n. 3, p. 1-13, 2024
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
GUZMAN, Grover Enrique Castro e STADLER, Peter F. e FUJITA, André. Cavity approach for the approximation of spectral density of graphs with heterogeneous structures. Physical Review E, v. 109, n. 3, p. 1-13, 2024Tradução . . Disponível em: https://journals.aps.org/pre/pdf/10.1103/PhysRevE.109.034303. Acesso em: 29 jan. 2026. -
APA
Guzman, G. E. C., Stadler, P. F., & Fujita, A. (2024). Cavity approach for the approximation of spectral density of graphs with heterogeneous structures. Physical Review E, 109( 3), 1-13. doi:10.1103/PhysRevE.109.034303 -
NLM
Guzman GEC, Stadler PF, Fujita A. Cavity approach for the approximation of spectral density of graphs with heterogeneous structures [Internet]. Physical Review E. 2024 ; 109( 3): 1-13.[citado 2026 jan. 29 ] Available from: https://journals.aps.org/pre/pdf/10.1103/PhysRevE.109.034303 -
Vancouver
Guzman GEC, Stadler PF, Fujita A. Cavity approach for the approximation of spectral density of graphs with heterogeneous structures [Internet]. Physical Review E. 2024 ; 109( 3): 1-13.[citado 2026 jan. 29 ] Available from: https://journals.aps.org/pre/pdf/10.1103/PhysRevE.109.034303 - Primitive, edge-short, isometric, and pantochordal cycles
- Network analysis of neuropsychiatry disorders
- Efficient Laplacian spectral density computations for networks with arbitrary degree distributions
- Convolution-based linear discriminant analysis for functional data classification
- A fast algorithm to approximate the spectral density of locally tree-like networks with assortativity
- A fast parameter estimator for large complex networks
- Vertex-wise graph’s spectral density decomposition and its applications
- Statistical methods for hypergraphs: a parameter estimator, a model selection, and a comparative test
- Spectral densities approximations of incidence-based locally treelike hypergraph matrices via the cavity method
- A message-passing approach to obtain the trace of matrix functions with applications to network analysis
Informações sobre o DOI: 10.1103/PhysRevE.109.034303 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3184468.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
