Convolution-based linear discriminant analysis for functional data classification (2021)
- Authors:
- USP affiliated authors: FUJITA, ANDRÉ - IME ; GUZMÁN, GROVER ENRIQUE CASTRO - IME
- Unidade: IME
- DOI: 10.1016/j.ins.2021.09.057
- Subjects: ANÁLISE MULTIVARIADA; ESTATÍSTICA DE PROCESSOS ESTOCÁSTICOS
- Keywords: Functional data; Time series; Supervised classification; Linear discriminant analysis; Filtering
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Information Sciences
- ISSN: 0020-0255
- Volume/Número/Paginação/Ano: v. 581, p. 469-478, 2021
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
GUZMAN, Grover Enrique Castro e FUJITA, André. Convolution-based linear discriminant analysis for functional data classification. Information Sciences, v. 581, p. 469-478, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.ins.2021.09.057. Acesso em: 11 fev. 2026. -
APA
Guzman, G. E. C., & Fujita, A. (2021). Convolution-based linear discriminant analysis for functional data classification. Information Sciences, 581, 469-478. doi:10.1016/j.ins.2021.09.057 -
NLM
Guzman GEC, Fujita A. Convolution-based linear discriminant analysis for functional data classification [Internet]. Information Sciences. 2021 ; 581 469-478.[citado 2026 fev. 11 ] Available from: https://doi.org/10.1016/j.ins.2021.09.057 -
Vancouver
Guzman GEC, Fujita A. Convolution-based linear discriminant analysis for functional data classification [Internet]. Information Sciences. 2021 ; 581 469-478.[citado 2026 fev. 11 ] Available from: https://doi.org/10.1016/j.ins.2021.09.057 - Primitive, edge-short, isometric, and pantochordal cycles
- StatGraph: an R package for complex network statistical analyses based on spectrum
- Vertex-wise graph’s spectral density decomposition and its applications
- A fast algorithm to approximate the spectral density of locally tree-like networks with assortativity
- A fast parameter estimator for large complex networks
- A message-passing approach to obtain the trace of matrix functions with applications to network analysis
- Spectral densities approximations of incidence-based locally treelike hypergraph matrices via the cavity method
- Efficient Laplacian spectral density computations for networks with arbitrary degree distributions
- Statistical methods for hypergraphs: a parameter estimator, a model selection, and a comparative test
- Cavity approach for the approximation of spectral density of graphs with heterogeneous structures
Informações sobre o DOI: 10.1016/j.ins.2021.09.057 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3049430.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
