A fast parameter estimator for large complex networks (2022)
- Authors:
- USP affiliated authors: FUJITA, ANDRÉ - IME ; GUZMÁN, GROVER ENRIQUE CASTRO - IME
- Unidade: IME
- DOI: 10.1093/comnet/cnac022
- Subjects: COMBINATÓRIA; TEORIA DOS GRAFOS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Complex Networks
- ISSN: 2051-1329
- Volume/Número/Paginação/Ano: v. 10, n. 3, artigo n. cnac022. p. 1-11, 2022
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
GUZMAN, Grover Enrique Castro e TAKAHASHI, Daniel Yasumasa e FUJITA, André. A fast parameter estimator for large complex networks. Journal of Complex Networks, v. 10, n. artigo cnac022. p. 1-11, 2022Tradução . . Disponível em: https://doi.org/10.1093/comnet/cnac022. Acesso em: 11 fev. 2026. -
APA
Guzman, G. E. C., Takahashi, D. Y., & Fujita, A. (2022). A fast parameter estimator for large complex networks. Journal of Complex Networks, 10( artigo cnac022. p. 1-11). doi:10.1093/comnet/cnac022 -
NLM
Guzman GEC, Takahashi DY, Fujita A. A fast parameter estimator for large complex networks [Internet]. Journal of Complex Networks. 2022 ; 10( artigo cnac022. p. 1-11):[citado 2026 fev. 11 ] Available from: https://doi.org/10.1093/comnet/cnac022 -
Vancouver
Guzman GEC, Takahashi DY, Fujita A. A fast parameter estimator for large complex networks [Internet]. Journal of Complex Networks. 2022 ; 10( artigo cnac022. p. 1-11):[citado 2026 fev. 11 ] Available from: https://doi.org/10.1093/comnet/cnac022 - Primitive, edge-short, isometric, and pantochordal cycles
- StatGraph: an R package for complex network statistical analyses based on spectrum
- Vertex-wise graph’s spectral density decomposition and its applications
- A fast algorithm to approximate the spectral density of locally tree-like networks with assortativity
- A message-passing approach to obtain the trace of matrix functions with applications to network analysis
- Spectral densities approximations of incidence-based locally treelike hypergraph matrices via the cavity method
- Convolution-based linear discriminant analysis for functional data classification
- Efficient Laplacian spectral density computations for networks with arbitrary degree distributions
- Statistical methods for hypergraphs: a parameter estimator, a model selection, and a comparative test
- Cavity approach for the approximation of spectral density of graphs with heterogeneous structures
Informações sobre o DOI: 10.1093/comnet/cnac022 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3127612.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
