Network analysis of neuropsychiatry disorders (2020)
- Authors:
- USP affiliated authors: FUJITA, ANDRÉ - IME ; GUZMÁN, GROVER ENRIQUE CASTRO - IME
- Unidade: IME
- DOI: 10.1016/B978-0-12-819178-1.00039-3
- Subjects: DIAGNÓSTICO POR COMPUTADOR; BIOINFORMÁTICA; PSIQUIATRIA; ENTROPIA
- Keywords: Centrality; Correlation; Functional brain network; Functional integration; Functional segregation; Granger causality; Motif
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
CASTRO GUZMAN, Grover Enrique et al. Network analysis of neuropsychiatry disorders. Precision medicine for investigators, practitioners and providers. Tradução . San Diego: Elsevier, 2020. . Disponível em: https://doi.org/10.1016/B978-0-12-819178-1.00039-3. Acesso em: 28 dez. 2025. -
APA
Castro Guzman, G. E., Balardin, J. B., Biazoli Junior, C. E., Sato, J. R., & Fujita, A. (2020). Network analysis of neuropsychiatry disorders. In Precision medicine for investigators, practitioners and providers. San Diego: Elsevier. doi:10.1016/B978-0-12-819178-1.00039-3 -
NLM
Castro Guzman GE, Balardin JB, Biazoli Junior CE, Sato JR, Fujita A. Network analysis of neuropsychiatry disorders [Internet]. In: Precision medicine for investigators, practitioners and providers. San Diego: Elsevier; 2020. [citado 2025 dez. 28 ] Available from: https://doi.org/10.1016/B978-0-12-819178-1.00039-3 -
Vancouver
Castro Guzman GE, Balardin JB, Biazoli Junior CE, Sato JR, Fujita A. Network analysis of neuropsychiatry disorders [Internet]. In: Precision medicine for investigators, practitioners and providers. San Diego: Elsevier; 2020. [citado 2025 dez. 28 ] Available from: https://doi.org/10.1016/B978-0-12-819178-1.00039-3 - Convolution-based linear discriminant analysis for functional data classification
- A fast algorithm to approximate the spectral density of locally tree-like networks with assortativity
- A fast parameter estimator for large complex networks
- Efficient Laplacian spectral density computations for networks with arbitrary degree distributions
- Cavity approach for the approximation of spectral density of graphs with heterogeneous structures
- Primitive, edge-short, isometric, and pantochordal cycles
- A message-passing approach to obtain the trace of matrix functions with applications to network analysis
- Vertex-wise graph’s spectral density decomposition and its applications
- Statistical methods for hypergraphs: a parameter estimator, a model selection, and a comparative test
- Identification of alterations associated with age in the clustering structure of functional brain networks
Informações sobre o DOI: 10.1016/B978-0-12-819178-1.00039-3 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2978289.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
