Heart rate variability predicts the subject-driven cognitive states (2022)
- Authors:
- USP affiliated authors: LEJBMAN, ALFREDO GOLDMAN VEL - IME ; FUJITA, ANDRÉ - IME ; FARFÁN, CARLOS ENRIQUE PAUCAR - IME ; GUZMÁN, GROVER ENRIQUE CASTRO - IME ; BRUEL, PEDRO HENRIQUE ROCHA - IME
- Unidade: IME
- DOI: 10.21203/rs.3.rs-1957712/v1
- Assunto: BIOINFORMÁTICA
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Research Square
- ISSN: 2693-5015
- Volume/Número/Paginação/Ano: Publicado online em 2022
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
- Licença: other-oa
-
ABNT
FARFÁN, Carlos Enrique Paucar et al. Heart rate variability predicts the subject-driven cognitive states. Research Square, 2022Tradução . . Disponível em: https://doi.org/10.21203/rs.3.rs-1957712/v1. Acesso em: 11 jan. 2026. -
APA
Farfán, C. E. P., Bruel, P., Goldman, A., Takahashi, D. Y., & Fujita, A. (2022). Heart rate variability predicts the subject-driven cognitive states. Research Square. doi:10.21203/rs.3.rs-1957712/v1 -
NLM
Farfán CEP, Bruel P, Goldman A, Takahashi DY, Fujita A. Heart rate variability predicts the subject-driven cognitive states [Internet]. Research Square. 2022 ;[citado 2026 jan. 11 ] Available from: https://doi.org/10.21203/rs.3.rs-1957712/v1 -
Vancouver
Farfán CEP, Bruel P, Goldman A, Takahashi DY, Fujita A. Heart rate variability predicts the subject-driven cognitive states [Internet]. Research Square. 2022 ;[citado 2026 jan. 11 ] Available from: https://doi.org/10.21203/rs.3.rs-1957712/v1 - Autotuning under tight budget constraints: a transparent design of experiments approach
- Cavity approach for the approximation of spectral density of graphs with heterogeneous structures
- Primitive, edge-short, isometric, and pantochordal cycles
- A fast parameter estimator for large complex networks
- Convolution-based linear discriminant analysis for functional data classification
- A message-passing approach to obtain the trace of matrix functions with applications to network analysis
- Efficient Laplacian spectral density computations for networks with arbitrary degree distributions
- A fast algorithm to approximate the spectral density of locally tree-like networks with assortativity
- Statistical methods for hypergraphs: a parameter estimator, a model selection, and a comparative test
- Vertex-wise graph’s spectral density decomposition and its applications
Informações sobre o DOI: 10.21203/rs.3.rs-1957712/v1 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3094685 - Heart Rate Vari... |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
