Pilot sequence allocation schemes in massive MIMO systems using heuristic approaches (2022)
- Authors:
- Autor USP: BONIDIA, ROBSON PARMEZAN - ICMC
- Unidade: ICMC
- DOI: 10.3390/app12105117
- Subjects: APRENDIZADO COMPUTACIONAL; BIOINFORMÁTICA; HEURÍSTICA; ALGORITMOS GENÉTICOS
- Keywords: pilot sequences; resource allocation; Massive MIMO
- Language: Inglês
- Imprenta:
- Source:
- Título: Applied Sciences
- ISSN: 2076-3417
- Volume/Número/Paginação/Ano: v. 12, n. 10, p. 1-21, 2022
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MATOS, Everton Alex et al. Pilot sequence allocation schemes in massive MIMO systems using heuristic approaches. Applied Sciences, v. 12, n. 10, p. 1-21, 2022Tradução . . Disponível em: https://doi.org/10.3390/app12105117. Acesso em: 10 fev. 2026. -
APA
Matos, E. A., Bonidia, R. P., Sanches, D. S., Pozza, R. S., & Sampaio, L. D. H. (2022). Pilot sequence allocation schemes in massive MIMO systems using heuristic approaches. Applied Sciences, 12( 10), 1-21. doi:10.3390/app12105117 -
NLM
Matos EA, Bonidia RP, Sanches DS, Pozza RS, Sampaio LDH. Pilot sequence allocation schemes in massive MIMO systems using heuristic approaches [Internet]. Applied Sciences. 2022 ; 12( 10): 1-21.[citado 2026 fev. 10 ] Available from: https://doi.org/10.3390/app12105117 -
Vancouver
Matos EA, Bonidia RP, Sanches DS, Pozza RS, Sampaio LDH. Pilot sequence allocation schemes in massive MIMO systems using heuristic approaches [Internet]. Applied Sciences. 2022 ; 12( 10): 1-21.[citado 2026 fev. 10 ] Available from: https://doi.org/10.3390/app12105117 - BioAutoML: Democratizing Machine Learning in Life Sciences
- BioAutoML: democratizing machine learning in life sciences
- Democratising artificial intelligence for pandemic preparedness and global governance in latin american and caribbean countries
- MathFeature: feature extraction package for DNA, RNA and protein sequences based on mathematical
- Procedural versus human level generation: two sides of the same coin?
- A novel decomposing model with evolutionary algorithms for feature selection in long non-coding RNAs
- Feature extraction approaches for biological sequences: a comparative study of mathematical features
- Breaking barriers: democratizing machine learning for RNA-protein interaction prediction in life sciences
- CRISPRloci: comprehensive and accurate annotation of CRISPR-Cas systems
- Ciência de dados: fundamentos e aplicações
Informações sobre o DOI: 10.3390/app12105117 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3082101.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
