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Abstract: This paper presents a comparison of different metaheuristic approaches applied to the
pilot sequence allocation problem in Massive Multiple-Input Multiple-Output (MIMO) systems. A
modified version of the Genetic Algorithm (GA) as well as different versions of the Particle Swarm
Optimization (PSO) Algorithm are used to maximize the system spectral efficiency under an inter-cell
interference regime. The metaheuristic parameters were optimized and computational simulations
under different scenarios parameters were conducted to verify the system performance impact in
terms of system spectral efficiency, minimum and maximum spectral efficiency per user and the
cumulative distribution function (CDF) of the users spectral efficiencies. The main contributions of
this work are: the creation of a public available dataset; heuristic parameters tuning; findings related
to the impact of sub-optimal pilot sequence allocation to the users in terms of maximal and minimal
achievable user spectral efficiency and the robustness of some algorithms in scenarios with different
system loadings.

Keywords: pilot sequences; resource allocation; Massive MIMO; heuristics

1. Introduction

The increasing number of multimedia services and online platforms are reflected
as a growth in the demand for connectivity and throughput worldwide. According to
Cisco [1], in 2018 there were 3.9 billion Internet users globally, and it estimates 5.3 billion in
2023, representing 66% of the global population by that year according to [2]. Part of the
global data traffic, 54%, will originate from mobile devices which will be responsible for
160 Exabytes (EB) per month of data traffic in 2025, a 321% growth when compared to the
38 EB per month in 2019 [3].

To support this demand, the wireless communications standard must evolve and
increase the total available throughput and the supported number of connected devices,
while keeping the average network latency to a minimum. These characteristics will even
make new services possible, such as autonomous cars [4].

Massive MIMO is a technology incorporated in 5G networks which corresponds to
the transmission of data through several antennas. Thomas L. Marzetta describes the use
of this technology for any multi-user MIMO system with more than 16 antennas [5]. The
proposed communications scheme relied on low complexity transceivers in the mobile
devices and time division duplexing (TDD) to provide a reliable communication channel.

Within a Massive MIMO system, an arbitrary array of bits, known as a pilot sequence,
is designated to each user and used in the uplink training process to simplify the signal
detection routines in mobile terminals. However, the use of non-orthogonal sequences
causes interference among users, which is known as the pilot contamination problem.
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To guarantee orthogonality, the size of the pilot sequence must increase with respect
to the number of users in the system. Hence, it is easy to verify that pilot sequences must
be reused in multi-cell environments and high-density urban areas to avoid long periods
of uplink training since as the number of orthogonal sequences increases the size of these
sequences also increases.

This work proposes to solve the pilot sequence allocation problem in multi-cell sce-
narios in a centralized fashion with the maximization of the network spectral efficiency as
a goal. The optimization problem is modeled into two different, but equivalent, ways: a
binary optimization problem and an integer optimization problem. Meanwhile, to solve
these optimization problems, we used different versions of the Genetic Algorithm (GA)
and Particle Swarm Optimization (PSO) metaheuristics.

1.1. Related Works

Among different studies whose objectives are to minimize the pilot sequence contami-
nation in TDD Massive MIMO systems, there is a considerable selection of methods, tools
and techniques already tested, e.g., greedy and tabu search, smart pilot assignment, genetic
algorithm (GA), deep learning, hybrid solutions and multi-objective approaches. To situate
the contributions of this work, we present a chronological list of related work:

• In [6], the authors approach the pilot contamination on Massive MIMO systems with
low complexity evolutionary algorithms comparing the performance in macro-cell
scenarios: greedy search, tabu search and a hybrid solution.

• In [7], the authors proposed a new algorithm named Smart Pilot Assignment. The
algorithm goal is to maximize all user signals to interference plus noise ratio (SINR)
within a cell. The base station calculates the cell observed interference for each of
the pilot sequences which users from neighbors’ cells cause. The algorithm then
assigns the pilot sequences following the rule: the user with the worst channel state
receives the pilot sequence with the smallest observed interference. This process is
repeated until each user has been assigned a pilot sequence, or the system has no pilot
sequences to assign.

• In [8], the authors proposed a greedy search. At each iteration, a number of users
are randomly selected from each cell to be assigned the same pilot sequence. The
selection is made such that the group chosen maximizes their transmission rate. As
the iterations grow, the number of selected users also grows. Likewise, the number
of possible selected users at each iteration shortens due to the already accomplished
pilot sequence assignments of previous iterations.

• In a different approach [9], the authors proposed the mitigation to pilot sequence
contamination modeling the problem as an Epsilon-restricted optimization problem
and then solving an eigenvalue decomposition problem through linear complexity.

• In [10], the authors proposed a simple pilot assignment algorithm based on the water-
filling algorithm. The users with the best channels received the pilot sequences under
the lowest interference effect. To achieve such, at each base station, both channel
state information (CSI) array, which contains each user CSI, as well as the inter-cell
interference observed by each pilot sequence, are sorted such that one is in increasing
order and the other in decreasing order. The pilot assignment is the combination of
indexes of these two arrays.

• In [11], the author used different algorithms to solve the pilot sequence assignment
problem. The main objective is to maximize the system throughput where the GA
was capable of obtaining the average maximum rate user with a smaller complexity.
Furthermore, the GA solution as well as random assignment and exhaustive search
are compared with the proposed schemes of [6].

• In [12], the authors proposed the assignment of orthogonal pilot sequences along with
sectorization. The pilot sequences are re-utilized in the same cell, reducing sizes of
the pilot sequence and optimizing spectral efficiency (SE), and Bayesian estimation is
used to eliminate pilot contamination.
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• In [13], the authors present an adaptive pilot sequence allocation algorithm which
separate the users in a cell into two groups: one for users who suffer high interference
from other cells and one for users under a low interference regime. The algorithm then
assigns mutually orthogonal pilot sequences for all the users under the interference
regime, while the other group of users shares the same set of pilot sequences.

• In [14], the pilot sequence allocation problem is solved using deep learning in the
form a 3-layer perception neural network. The proposed scheme reaches 99.38% of the
theoretical upper-bound performance and takes only 0.92 milliseconds to compute.

• In [15], an algorithm of clustering divides users into two groups, low and high inter-
ference. In the group with low interference, the pilots are re-utilized randomly, while
high interference groups are grouped by propagation affinity.

• In [16], the authors mitigated the pilot sequence allocation problem through user
categorization in high and low interference groups based on large-scale fading, where
the high interfering users receive orthogonal pilot sequences, and non-orthogonal
pilot sequences are allocated to users under a low interference regime. The authors
propose the use of an edge-weighted interference graph to maximize the performance
of users in the low interference bracket.

• In [17], the authors proposed the pilot sequence allocation allied to power alloca-
tion based on a Monte Carlo Tree Search Method (MCTS) which mitigates the pilot
contamination. Moreover, the AlphaGo algorithm is used to play the proposed pi-
lot allocation game, while the Markov Decision Problem (MDP) solves the power
allocation problem.

• In [18], based on works [19,20] an adaptation of the particle swarm optimization
algorithm to solve the joint pilot sequence allocation and power control problem in
Massive MIMO systems was proposed. The authors aim to maximize the spectral
efficiency with a limited number of pilot sequences based on coherence interval, while
also taking power constraints into account.

• In [21], the authors proposed a joint pilot sequence allocation and antenna scheduling
scheme to curb the effects of pilot sequence contamination in Massive MIMO systems
where there are a limited number of antennas. To allocate the sequences to multiple
users, they proposed rules using either geometric or arithmetic progression in the num-
ber of users using the same sequence. Furthermore, they compare their solution with a
Greedy pilot sequence allocation scheme and the Smart Pilot Assignment algorithms.

• The work in [22] presents different pilot allocation solutions for cell-free scenarios.
The first algorithm is based on the concept of random sequential adsorption using
statistical physics, while the second one is an analytical approach of the first one. The
authors also describe two centralized algorithms based on clustering principles to
benchmark the proposed solutions. The results show that the distributed solutions
have a competitive performance compared to the centralized ones, especially when
the user density is high.

1.2. Contributions

Our study presented four new main contributions on the subject of Massive MIMO
pilot sequence allocation problem:

• The dataset as well as the scripts used to achieve the results are public (Available at
github.com/evertonalex/utfpr-ppgi-pilotcontamination, accessed on 16 May 2022);

• The heuristic parameters to the problem assessed were optimized;
• Six different heuristic approaches to the problem comparing it with the simplest

solution were evaluated;
• Real scenarios under different parameters to establish the real impact of a pilot alloca-

tion scheme were simulated.

Furthermore, we present the differences between our work and those presented in the
previous section:

• Two different mathematical models of the same practical problem were addressed;

github. com/evertonalex/utfpr-ppgi-pilotcontamination
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• Multiple versions and modifications in the PSO algorithm were tested to verify their
performance;

• Using The minimum spectral efficiency per user as a performance parameter was used;
• Different scenario parameters were tested to verify the impacts of the pilot sequence

schemes in macro, micro and femto-cells.

1.3. Text Organization

This paper is organized as follows. In Section 2, the system model is described with
the mathematical problem. In Section 3, the solution with optimization is applied with
the evolutionary algorithms. In Section 4, the best parameters are presented and the
results of simulations are shown. Finally, in Section 5, we offer the conclusion and final
considerations.

2. System Model

We consider a Massive MIMO system with L > 1 cells using the same spectrum
band and K` mobile terminals connected with its single base station which has M >> K`

antennas. To acquire channel state information (CSI) at each coherence interval, each user
in the system must send a pilot sequence through the uplink channel. The pilot sequence
uplink signal received by the base station ` is a M× Tp matrix where Tp is the pilot sequence
size, and it may be described as:

Ru
` =

Desired signal from cell users︷ ︸︸ ︷
K`

∑
k=1

√
pk,` gk,`,` sH

k,` +

+
L

∑
j=1
j 6=`

Kj

∑
k′=1

√
pk′ ,jgk′ ,j,` sH

k′ ,j

︸ ︷︷ ︸
Pilot Contamination / Interference

+ η` (1)

where k, `, k′ and j are the user, cell of interest, interfering users and adjacent cell indexers,
respectively. Moreover, Ru

` ∈ CM×Tp , pk,` is the transmission power of each user, sk,` ∈
CTp×1 is the pilot sequence, whereas (·)H is the Hermitian operator and is equivalent to
the transposed complex conjugate, η` ∈ CM×Tp is the noise matrix whose elements are
complex Gaussian random variables with zero mean and variance equal to N0 B where N0
is the noise power spectral density (The noise PSD (N0) is equal to the Boltzmann Constant
times the temperature, i.e., it is equivalent to approximately 4.11× 10−21 watts per hertz
at 25 degrees Celsius) and B the system bandwidth. Finally, gk,j,` ∈ CM×1 is the channel
gain between the k-th user from cell j and the base station of cell `, which represents the
large-scale fading (βk,j,`) and the small-scale fading (hk,j,`), i.e.,:

gk,j,` =
√

βk,j,` hk,j,` (2)

where hk,j,` ∈ CM×1 are independent and identically distributed complex Gaussian ran-
dom variables with zero mean and unit variance. Meanwhile, βk,j,` is the path loss and
shadowing effects. We assume a simplified path loss model, i.e.,:

βk,j,` =

(
λ

4 π d0

)2
(

d0

dk,j,`

)γ

Sk,j,` (3)

where λ is the wavelength, d0 is the reference distance (Typically, d0 ∈ [1, 10] meters for
indoor environments and d0 ∈ (10, 100) meters for outdoors), dk,j,` is the distance (in
meters) from the k-th user of cell j to the base station in cell `. Finally, γ ∈ [2, 8] is the path
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loss exponent which is directly related to the scenario where the wireless communications
take place, and Sk,j,` is the shadowing log-normal distributed random variable with zero

mean and variance 10
σ2

s
10 where σ2

s ∈ [4, 13] for outdoor channels.
We suppose the use of an orthogonal variable spreading factor (OVSF) code to generate

the pilot sequences which are designated to each user through the pilot sequence allocation
hipermatrix Φ ∈ {0, 1}K`×Tp×L whose elements are defined as:

φk,q,` =

{
0 pilot sequence is not allocated
1 pilot sequence is allocated

}
(4)

Moreover, according to [5], the uplink signal to interference plus noise ratio (SINR)
of user k from cell ` observed by its base station when the number of antennas grows
indefinitely is:

δBk,` =
βk,`,`

N0 B +
Kj

∑
j 6=`
j=1

Kj

∑
k′=1

φk,`φ
T
k′ ,j βk′ ,j,`

(5)

where φk,` is a row from the hipermatrix Φ, i.e., it is a {0, 1}1×Tp array that designates
which pilot sequence is allocated to user k of cell `. Whenever φk,`φ

T
k′ ,j = 1, users k and k′

from cell ` and j, respectively, use the same pilot sequence and, therefore, interfere in each
others signal.

Alternative Representation

An alternative to the allocation variable binary representation is to use an integer
representation, i.e., instead of using a binary pilot sequence allocation hipermatrix for the
set of cells, one may use a single integer pilot sequence allocation Θ ∈

{
1, . . . , Tp

}L×K

such that:
θ`,k = x (6)

if the pilot sequence number x ∈ {0, . . . , Tp} is allocated to user k of cell `.
In this representation, we introduce a new function which is responsible to verify if

user k′ from cell j is using the same pilot sequence as user k from cell `. Therefore, consider
F(k, `, k′, j) : ZK×L×K×L → {0, 1} such that:

F(k, `, k′, j) =
{

0, if θ`,k 6= θj,k′

1, otherwise
(7)

Furthermore, we may rewrite Equation (5) using (7):

δZk,` =
βk,`,`

N0 B +
Kj

∑
j 6=`
j=1

Kj

∑
k′=1

F(k, `, k′, j) βk′ ,j,`

(8)

It is clear from Equations (5) and (8) that we may derive two equivalent optimization
problems which are described in the next section.

3. Optimization Problems

The pilot sequence allocation optimization problem discussed here aims to maxi-
mize the total system spectral efficiency, simultaneously satisfying the constraints of pilot
sequence orthogonality within the same cell as well as the fact that no users should be
assigned different pilot sequences at the same time.

Moreover, it is important to differentiate the two mathematical models of allocation
into two optimization problems: one optimization problem (OP1), as in Equation (9), uses
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the binary allocation matrix representation found in Equation (5) and is mathematically
defined as:

maximize
Φ

J1(Φ) =
L

∑
`=1

K`

∑
k=1

log2

(
1 + δBk,`

)
(9)

subject to
Tp

∑
q=1

φk,q,` ≤ 1, ∀ k and ` (10)

K`

∑
k=1

φk,q,`= 1, ∀ q and ` (11)

φk,q,` ∈ {0, 1}, ∀ k, q, ` (12)

where Equation (10) assures that no more than one pilot sequence is assigned to each user,
while Equation (10) guarantees that each pilot sequence is used by only one user in each cell,
and Equation (12) imposes that the decision variable is binary. Meanwhile, optimization
problem 2 (OP2), as in Equation (13), uses the integer index representation introduced in (8)
and may be described as:

maximize
Θ

J2(Θ) =
L

∑
`=1

K`

∑
k=1

log2

(
δZk,`

)
(13)

subject to θ`,k 6= θ`,k′ , ∀ `, k and k′ (14)

θ`,k ∈ {1, . . . , Tp}, ∀ ` and k (15)

where Equation (10) assures that the same pilot sequence is used more than one time within
a cell, avoiding intra-cell interference, while Equation (11) assures that only the available
pilot sequences are allocated to each user in the cell. Note that the constraints in OP2 are an
integer adaptation of the same constraints in OP1.

To solve the optimization problem in (9), we use two different metaheuristic ap-
proaches. First, the binary version of the Particle Swarm Optimization (PSO) algorithm is
considered. Later, a binary version of the Genetic Algorithm (GA) is also used to achieve
a centralized pilot sequence allocation. Furthermore, we use the Smallest Position Value
(SPV) technique along the PSO algorithm and Variable Neighbourhood Search (VNS) to
solve the second optimization problem in (13). It is worth noting that although (9) and (13)
have different domains, they represent the same physical problem and the conversion from
one domain to another follows the rule presented by Equation (6).

4. Proposed Solutions

The optimization problems are solved using different methods: binary PSO (BPSO)
and GA to solve (9), while PSO, SPV and VNS are used to solve (13). In this section we
provide a detailed explanation of how these techniques are applied in this context.

4.1. Binary Particle Swarm Optimization

The BPSO was first described by Kennedy and Eberhart [23] and was an adaptation
of the original (continuous) PSO. This algorithm works based on the behaviour of birds
in search of foods, and the each candidate solution is presented as a bird in a flock flying
through the search space (optimization problem domain), and the found represents the
optimal solution. At each algorithm iteration, the velocity of each particle is updated
through the equation:

vi[t + 1] = ω vi[t] + c1 r1 (xi[t]− pi) + c2 r2 (xi[t]− pg) (16)

where ω is the inertia weight, vi is the candidate i velocity, xi is the particle position in
the search space, pi is the best position candidate i has ever been to in terms of fitness
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function, and pg is the best position overall the whole population, i.e., the first keeps an
individual best position record and the latter, a global best position record. The coefficients
c1 and c2 are the cognitive and social acceleration constants, respectively, whilst r1 and r2
are uniformly distributed random numbers in the interval [0, 1].

In a classical PSO algorithm, the next step would be updating each candidate position
using its velocity. However, to implement a binary version, the change in each candidate
dimensions must also be either zero or one. Therefore, a sigmoid function is applied to
each velocity component, and it is equivalent to the probability of changing each bit. In
this paper, we use the following sigmoid function in each dimension vi:

S(vi[t]) =
1

1 + e−vi [t]
(17)

The sigmoid function value is then compared to a random value generated to each
dimension of the candidate xi such that:

xi[t + 1] =
{

1 if r < S(vi[t])
0 otherwise

(18)

where r ∼ U (0, 1), i.e., r is a random variable with uniform distribution over the inter-
val (0, 1).

Although the position possibilities are constrained to {0, 1}, particle velocity may grow
indefinitely. Hence, a maximum velocity constraint may be applied to each dimension, i.e.,:

vi[t + 1] =
{

vmax if vi[t + 1] > vmax
−vmax if vi[t + 1] < −vmax

(19)

Furthermore, since OP1 in (9) is a constrained optimization problem, we present two
alternatives to treat the unfeasible solution candidates. The first is simply discarding the
unfeasible candidates and replacing them with a random feasible one; the second is using a
new fitness function defined as:

J̃1(Φ) =

{
J1(Φ) if feasible
Jmin −P if unfeasible

(20)

where Jmin is the worst feasible solution in the PSO population, and P is the sum of the
constraints in Equations (10) and (11), i.e.,:

P =
L

∑
`=1

K`

∑
k=1

( Tp

∑
q=1

φk,q,` − 1

)
+

L

∑
`=1

Tp

∑
q=1

(
K`

∑
k=1

φk,q,` − 1

)
(21)

Finally, a pseudocode of the BPSO algorithm is presented in Algorithm 1.
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Algorithm 1: BPSO
input :Channel gain Hipermatrix—β

Population Size—N
Max. Number of Iterations—I

output :Pilot Sequence Allocation Hipermatrix Φ

Create N random candidate solutions x1[1], . . . , xN [1];
Evaluate J (x1), . . . , J (xN) acoording to (9);
Start pi for each i = 1, . . . , N and pg = arg max

pi

J (pi);

for i = 1 until I do
for j = 1 until N do

Update xj[i + 1] using Equation (16) up to Equation (19);
Evaluate the new solutions using Equations (20) and (21);
if J (xj[i + 1]) > J (pj) then

pj = xj[i + 1];
end
if J (xj[i + 1]) > J (pg) then

pg = xj[i + 1];
end

end
end

4.2. PSO-Smallest Position Value

To solve the optimization problem (13), we used the Smallest Position Value method
along with the PSO algorithm (PSO–SPV). In the SPV, the value of each problem dimension
is exchanged by the index of the sorted values. In this specific problem, it is equivalent to
the SPV value designating the pilot sequence allocated to each user. The sorting process
which is responsible for swapping the real values for their ordinal ones is performed
separately for each cell in the system. To illustrate the application of the SPV method,
we present Table 1 which relates the value of each PSO particle (Real Value) to the pilot
sequence assignment when four dimensions (users) are accounted for in a single cell.

Table 1. Example of operation of SPV in a single cell, K = 4 users scenario.

Dimension (User) 1 2 3 4
Real value 4.85 −2.15 145 −1.333

SPV (Pilot Sequence) 3 1 4 2

Using an SPV changes the problem domain from a binary scenario to integers values
such that θk,` = x where k is the dimension of the SPV scheme and x is the SPV value, while
` designates the cell of interest.

The PSO is used along with the SPV through the application of Equation (16) and the
update position equation:

xi[t + 1] = xi[t] + vi[t + 1] (22)

It is important to point out that the velocity limits defined by Equation (19) are also
applied to the PSO–SPV solution. Furthermore, from the nature of this approach, it is
unlikely that two users will have the same pilot sequence assigned, or the other way
around, since the sorting process would only place two users in the same position if their
real values are exactly the same. To avoid this situation, in case two dimensions of an
individual present the exact same real value, the tie break is the user index: the smallest
user indexer is sorted as the smallest value. Due to these two facts, the PSO–SPV fitness
function is the objective function presented in (9), which means that the BPSO and PSO–SPV
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use different objective functions although the algorithms objective is the same: maximizing
the system spectral efficiency.

4.3. Variable Neighbourhood Search

Another technique we also used to make the PSO–SPV approach even more robust is
the Variable Neighbourhood Search metaheuristic which is based on the systemic change
of neighborhoods of each possible solution in an attempt to find better solutions near the
PSO candidate solutions.

VNS is applied to the PSO–SPV through an exchange of sequences allocated to user
pairs on the same cell, i.e., users are randomly paired, and their pilot sequences are swapped
whenever VNS is applied at each iteration of the PSO–SPV algorithm. Mathematically for
each pair k′ e k′′ of users:

θk′ ,` = q′ → θk′ ,` = q′′

θk′′ ,` = q′′ → θk′′ ,` = q′ (23)

where q′ and q′′ are the assigned pilot sequences. It is worth noting that when the number
of the users is even, one of the users is left out of the VNS subroutine, and its pilot sequence
remains unchanged.

To avoid a large increase in complexity, this mechanism is not performed for all
individuals of the PSO–SPV population. In fact, we define rvns as the probability of
running VNS for each candidate solution in each one of the PSO–SPV iterations. The best
balance between complexity and solution quality for the rvns parameter is discussed in the
results section.

Finally, the PSO–SPV and PSO–SPV–VNS algorithms are presented in the Algorithm 2.

Algorithm 2: PSO–SPV–VNS
input :Channel gain Hipermatrix—β

Population Size—N
Max. Number of Iterations—I

output :Pilot Sequence Allocation Hipermatrix Θ

Create N random candidate solutions x1[1], . . . , xN [1] in the RK×L space;
Apply SPV to each xi[1] generating the pilot sequence allocation array θi[1];
Evaluate J (θi[1]), . . . , J (θN [1]) according to (13);
Start pi for each i = 1, . . . , N and pg = arg max

pi

J (pi);

for i = 1 until I do
for j = 1 until N do

Update xj[i + 1] using Equations (16), (19) and (22);
Apply SPV to each xi[t + 1] generating the pilot sequence allocation array

θi[i + 1];
if rand() < rvns then

Randomly pair users and performe VNS through (23);
end
if J (θj[i + 1]) > J (pj) then

pj = θj[i + 1];
end
if J (θj[i + 1]) > J (pg) then

pg = θj[i + 1];
end

end
end
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4.4. Genetic Algorithm

GA is an evolutionary computation method created by John H. Holland [24], wherein
the algorithm simulates the theory of evolution by Charles Darwin.

The process consists of taking a population of individuals which are composed of
chromosomes and applying different genetic operations to the individuals chromosomes,
combining them while aiming to improve some fitness function. At each iteration of the
algorithm, called a generation, individuals pair up to create descendants creating a new
generation. During this process, the chromosomes, which can represent a position in the
problem domain, may suffer mutation, while the individuals derived from their parents are
created from a crossover operation. At each generation, only the best suitable individuals
survive and transmit their genes to the next generation.

To further specify how the GA is applied to the optimization problem, we define the
fitness function as the function J in (9). In addition, the GA will have three operators: a
proportional fitness selection to define the parents for each new individual, the crossover
operator and the the mutation operator.

The first step in each iteration is to select the parents for the next generation. Here
we apply a fitness proportional selection, i.e., the probability of each individual i at some
generation t to be selected as a parent is proportional to J (xi[t]). Mathematically, the
probability of i being selected as a parent is defined as:

Pr(Φi) =
J (Φi)

N
∑

j=1
J (Φj)

(24)

The crossover operator is responsible for combining the parent’s chromosomes and
generating the children’s ones. To do this and simultaneously satisfy the constraints in
Equations (10)–(12), we propose the use of a one-point crossover. To understand how the
crossover operation is carried out, we first revisit the pilot sequence allocation hypermatrix
which is a K× Tp × L hypermatrix. Moreover, the crossover point is set at one of the cells
and is defined as `′. Hence, the first child is made of the individual allocation matrices from
both parents: from cell 1 to `′, the matrices are from the first parent and from cell `′ + 1
to L from the second parent. Its sibling is the mirror of that, i.e., the first parent passes
the matrices from `′ + 1 to L, while the second parent the matrices from 1 to `. We define
`′ = bL/2c.

The choice of this technique among the many others in the literature is involved
in creating children to AG where they did not respect all the constraints of the problem
domain. For this reason, the one-point crossover utilized granted that all children generated
of crossing fathers are on the feasible solution for the problem.

To preserve the best solution throughout the generations if all the descendants at a
given generation are worse than the best individual so far, we replace the worst individual
of that generation with the best solution from the previous generation.

Finally, the mutation of an individual is carried out in a way that also satisfies the
constraints in Equations (10)–(12). Without the loss of generality, let K = Tp be even. The
first step of the mutation operator is to generate a random permutation of the numbers
from one to K for each cell `. Let p` = [p1, . . . , pK] be that permutation, the first half of the
permutation p`, i.e., from p1 to p K

2
, is paired up element-wise with the second half, that

is p K
2 +1 to pK. Finally, we perform operations in the child hypermatrix such that for each

cell’s permutation the users defined by the number in each half permutation swap their
pilot sequence. It is worth noting that mutation does not happen for every individual since
there is a mutation rate Tm ∈ (0, 1) which defines the probability of a mutation occurring
in each member of a population.

These three operations happen at each iteration of the GA and are repeated until the
maximum number of generations is achieved. The pseudocode for the adapted binary GA
is presented in Algorithm 3.
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Algorithm 3: Binary Genetic Algorithm
input :Max number of generations—Gmax, Mutation ratio—Tm

Channel gain hypermatrix—β, Population size—N
output :

Hypermatrix of allocated pilot sequences—Φ

Create N candidate solutions x1[1], . . . , xN [1];
for t = 1 until Gmax do

for n = 1 until N/2 do
Select two parents xi[t] and xj[t] using proportional selection;
Perform the crossover operation generating xi[t + 1] and xj[t + 1];
if rand(0, 1) > Tm then

Perform the mutation operation;
end

end
Evaluate J (xn[t + 1]) for all x;
if @ n such that J (xn[t + 1]) > max(J (x[t])) then

Preserve the best solution from the generation t replacing the worst
solution in t + 1:;

min
n

(J (xn[t + 1])) = max
n

(J (xn[t])) ;

end
end

The literature has other candidate solutions for use, but this problem as described
in Section 2 is a combinatorial optimization problem. In a general way, the methods
utilized are mathematically complex and in binary or integer scenarios. Considering all the
constraints introduced, the approach in the literature is not easy to adapt.

5. Simulations Results

We verify the applicability of the techniques presented in this manuscript to the
pilot sequence assignment problem, as well as the impact of using them in terms of user
SINR, system spectral efficiency and minimum and maximum user spectral efficiency.
We developed a MATLAB script to create a dataset and made it public at github.com/
evertonalex/utfpr-ppgi-pilotcontamination, accessed on 12 May 2022.

We consider a seven hexagonal cell cluster geographically disposed such as presented
in Figure 1. Each user in the cell is randomly positioned. However, to establish some
physical limits, user positions can only be integers numbers pairs and must be contained
within the limits of the hexagon, i.e., let (x, y) ∈ Z2 be some user position related to its
base station which is fixed at the origin, x, y ∼ U{1, R}, and the following conditions are
also met:

1. |x| ≤ R

2. |y| ≤
√

3
2 R

3.
√

3
2 |x|+ |y| ≥

√
3

2 R

github.com/evertonalex/utfpr-ppgi-pilotcontamination
github.com/evertonalex/utfpr-ppgi-pilotcontamination
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300
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Mobile Terminals

Figure 1. Base stations, users and cells geographic disposition in our simulation scenario. User
positions were randomly generated.

After their positions are randomly generated with respect to the origin, each user
position is translated to their cell position. Moreover, this process replaces any users that
overlap the same position with a new random one. Table 2 shows the parameters used in
the aforementioned scenario.

Table 2. System parameters used in the computational simulations.

Parameter Adopted Value(s)

Number of Cells (L) 7
Number of Users per Cell (K) {20, 40, 60}

Cell Radius (R) {100, 250, 500, 1000} (m)
Wavelength (λ) 8.56 (cm)

Reference Distance (d0) 10 (m)
Path Loss Exponent (γ) {6, 2}

Shadowing Variance (σ2
s ) {6, 10} (dB)

Channel Bandwidth (B) 20 (MHz)
Transmission frequency 3.5 GHz

Dataset instances 1000 per set of parameters

5.1. Heuristic Parameters Optimization

At this point, when the performance results are combined with the execution time
results, such as observed in Figure 2 and 3, more iterations do not represent a more
significant increase in performance. Hence, the best approach is to use as few iterations as
possible in each of the algorithms due to the high cost and low increase in performance. All
the simulations use the optimal parameters for each heuristic, and the number of iterations
is set to 50.



Appl. Sci. 2022, 12, 5117 13 of 21

8 8.5 9 9.5 10

RA

GA

BPSO

SPV PSO

SPV VNS PSO

SPVG PSO

SPVG VNS PSO

50 iterations

100 iterations

200 iterations

Figure 2. Spectral efficiency average by iterations.

0 100 200 300 400 500 600 700 800

GA
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50  iterations
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Figure 3. Time to complete the execution of a single instance in the dataset by each algorithm. We
used a Google Cloud solution with 32 virtual CPUs, 32GB of RAM, running MATLAB on Ubuntu 20.

Since each heuristic has its own set of parameters which may impact the overall
performance, we investigated the algorithms performance in the following scenario: K = 20
users and R = 1000 m. The findings, for each heuristic, are presented in Table 3. The values
which result in the best performance are marked in bold type.
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Table 3. Set of tested heuristic parameters. The parameters in bold are the ones which resulted in the
best system spectral efficiency.

BPSO Parameters Tested Value(s)

Inertia (ω) {0.1, 0.25, 0.5}
Max. Velocity (vmax) {1, 2, 3}

Coefficient (c1, c2) {(1, 1), (2, 2), (3, 3)}
Max. # of Iterations (I) {50, 100, 200}

Population Size (N) 2× K

SPV(G)-PSO Parameters Tested Value(s)

Variable neighborhood search (VNS) {0.15, 0.30, 0.60}
Max. # of Iterations (I) {50, 100, 200}

Population Size (N) 2× K

GA Parameters Tested Value(s)

Mutation Rate (Tm) {0.25, 0.50, 0.75}
Max. # of Generations (Gmax) {50, 100, 200}

Population Size (N) 2× K

It is worth noting that although we tested different parameters for each heuristic, the
results in terms of system spectral efficiency are where all are within a less than 1% margin
from each other. For instance, the increment in the results for GA when Gmax goes from 100
to 200 is around 0.0019%. Additionally, the increment from using a 0.5 mutation rate to a
0.75 is around 0.0067%. In both cases, the difference means less than a bit per second per
Hertz, which mean they are irrelevant system-wise.

This pattern is also observed in the BPSO, SPV–PSO and SPVG–PSO (with or without
VNS) results. The difference between the parameters is within the margin of error for the
dataset size used in our work.

Since the difference between the algorithms performance in terms of average SE is
marginal, we further analyzed the minimal spectral efficiency case. The argument here is
that increasing the minimal SE may result in a reduction in terms of outage probability.

Thus, Table 4 presents the minimal SE for different combinations of maximum number
of iterations and for each algorithm. It is worth noting that only the optimal heuristic
parameters were used in this simulation. Furthermore, it is clear that the tested heuristics
are divided into two groups when we compare their performance: the low performing
group includes RA, BPSO and GA while the high performing group is composed of SPV–
PSO, SPV–VNS–PSO, SPVG–PSO and SPVG–VNS–PSO.

Table 4. Minimal spectral efficiency (in bps/Hz) using the optimal parameters for each heuristic
(ω = 0.25, vmax = 2, VNS = 0.30, Tm = 0.50 and K = 20).

Algorithm
Max. # of Iterations (I)

50 100 200

RA 7.56× 10−5 7.56× 10−5 7.56× 10−5

BPSO 7.56× 10−5 7.56× 10−5 7.56× 10−5

GA 7.56× 10−5 7.56× 10−5 7.56× 10−5

SPV PSO 1.4143 1.4329 1.4246
SPV VNS PSO 1.3762 1.3364 1.3239

SPVG PSO 1.3897 1.3794 1.3956
SPVG VNS PSO 1.3191 1.3419 1.2982

Besides the aforementioned fact, one can also imply that the average variation in
performance among all algorithms in the high performance bracket when the number of
iterations is increased from 50 to 100 is less than 2%. Additionally, even though Table 4
shows that RA, BPSO and GA had the same performance despite the change in the number
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of iterations, the average difference in performance was in the order of 0.0013% when the
number of iterations rise from 50 to 100.

Finally, as it is commonplace, increasing the number of iterations directly impacts the
computational time of all the algorithms but RA. Hence, we present Figure 3 which shows
the average time needed to compute the solution.

At this point, it is clear when the performance results are combined with the execution
time results that the best approach is to use as few iterations as possible in each of the
algorithms due to the high cost and low increase in performance. From now on, all the
simulations use the optimal parameters for each heuristic, and the number of iterations is
set to 50.

As one may observe, each algorithm has a set of parameters that need to be adapted
to the discussed problem. In order to find the best parameters, we considered a macro-cell
scenario scenario with K = 20 users per cell of R = 1000 m in radius and a maximum
number of iterations I = 50 to all heuristics.

For the PSO-based algorithms, we first analyzed the inertia coefficient ω. Figure 4
shows the results which demonstrate that ω = 0.25 is the best configuration for both
BPSO and SPVG–PSO, while ω = 0.1 is the best option for SPV–PSO. Even though the
performance differences of the tested parameters values are marginal, the best values were
used to evaluate other aspects of the proposed solutions.

9 9.005 9.01 9.015 9.02 9.025 9.03 9.035 9.04

BPSO

SPV PSO

SPVG PSO

Inertia 0.1

Inertia 0.25

Inertia 0.50

Figure 4. Results of tests to find the better parameter to inertia (K = 20, R = 1000 m and vmax = 1).

The second parameter tested in the PSO-based algorithms was the maximum velocity
(vmax). Values from one to four were used, and the best results were different for each
algorithm: vmax = 4 for the BPSO, vmax = 3 to SPV–PSO and vmax = 2 to SPVG–PSO.
The tests results are shown in Figure 5. As it was observed with the inertia coefficient,
the increment in system performance were less than 0.1% when compared to the random
allocation process.
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9 9.005 9.01 9.015 9.02 9.025 9.03 9.035 9.04

BPSO

SPV PSO

SPVG PSO

Vmax 1

Vmax 2

Vmax 3

Vmax 4

Figure 5. Result of tests to find the better parameter to vmax (K = 20, R = 1000 m and (ω) = 0.25).

The third and forth parameters tested were the local and global solution weights (c1
and c2). These parameters are not found in the SPVGs variants, so they were only tested
for BPSO and SPV–PSO.

All the previous analysis considered that c1 = c2 = 1, so we compared the results with
those solutions. Increasing the local solution weight c1 = 2 and maintaining the global
weight c2 = 1 downgrades the BPSO performance in 0, 001%, while increasing the SPV–
PSO performance in 0.02%. Further increasing the local solution c1 = 5 and c2 = 1 made
the BPSO algorithm’s performance around 0.004% higher than the baseline (c1 = c2 = 1),
while an increase of 0.03% was found for the SPV–PSO when compared to the baseline.
Finally, changing the parameters to c1 = 1 and c2 = 5 increased the BPSO performance in
0.005% while decreased the SPV–PSO performance in 0.02%

This test showed that c1 and c2 values are not significant in terms of performance since
their impact are in the one thousandth of a bit/s/Hz mark.

The last PSO-based parameters optimization was the VNS rate. We tested four different
configurations, and the results are presented in Figure 6. They demonstrate that a rate of
0.9 is the best configuration for both SPV–PSO–VNS and SPVG–PSO–VNS.

Finally, the GA algorithm parameter was tested. Figure 7 shows the GA’s performance
for different mutation rates, and the Tm = 0.9 was found to be the best parameter value.
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VNS 0.60

VNS 0.90

Figure 6. Results of tests to find the better parameters to VNS (K = 20, R = 1000 m, (ω) = 0.25 and
vmax = 1).
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9.003

9.0035
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Detail

Figure 7. Results of tests to find the better parameters to Tm (K = 20, R = 1000 m).

5.2. Cell Size Impact on Performance

We conducted an analysis of the impact of cell size on all of the algorithms performance.
We set up a scenario with K = 20 users per cell and the maximum number of iterations
per algorithm to 50. To evaluate performance, Figure 8 shows the cumulative distribution
function using our dataset.

As one may see, the impact of cell size on the CDF is really marginal, which may
indicate that the system is not interference bounded. This is corroborated with two facts.
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No intracell interference exists due to the orthogonality of the pilot sequences within a cell.
The path-loss and shadowing effects deteriorate the interfering signals from other cells.
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SPV PSO

SPV VNS PSO

SPVG PSO

SPVG VNS PSO

0.64913

0.64914

0.64915

0.64916

Detail 1

23.6 23.8

0.48334

0.48336
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Detail 2

RA, BPSO, GA

and SPVG PSO VNS 

(R=100m)

RA, GA,

SPVG PSO VNS 

(R=250m)

RA, GA,

SPVG PSO VNS 
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RA, GA, BPSO 
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SPV PSO/VNS and SPVG PSO (R=100m)

BPSO, SPV PSO/VNS and SPVG PSO (R=250m)

BPSO, SPV PSO/VNS and SPVG PSO (R=500m)

SPV PSO/VNS and SPVG PSO/VNS (R=1000m)

Figure 8. Empirical CDF for different cell sizes with K = 20 users, Gmax = 50 generations and
I = 50 iterations.

Although the optimization problem aims to maximize the system spectral efficiency,
we analysed the minimum spectral efficiency among all users in the system which may
be seen as a fairness measure in the system. Table 5 presents the numerical values of
the average lowest spectral efficiency in the system considering the 1000 instances in the
dataset. The difference between the results for the RA, BPSO and GA algorithms were
marginal, so they are listed in the same column.

An important remark to make here is: for a cell with a 100 m radius, the SPV–PSO has
an average lowest spectral efficiency 1.7% higher than the RA, BPSO and GA algorithms.

Table 5. Minimum spectral efficiency per user in different cell sizes. The best value for each algorithm
is marked in bold type.

Parameters

Minimum Spectral Efficiency per User (in bps/Hz)

BPSO/GA
SPV–PSO SPVG–PSO

w/o VNS with VNS w/o VNS with VNS

K = 20, R = 1 Km 7.56 ×10−5 1.4143 1.3762 1.3897 1.3191
K = 20, R = 500 m 7.85 ×10−5 1.4233 1.402 1.4093 1.3561
K = 20, R = 250 m 7.90 ×10−5 1.4142 1.3858 1.3782 1.3873
K = 20, R = 100 m 8.03 ×10−5 1.4414 1.3605 1.3986 1.3424

In relation to the average maximum spectral efficiency, the results are presented in
Table 6. It is clear that RA, BPSO and GA algorithms have a worse performance than the
other ones. In fact, the average maximum spectral efficiency more than doubles when the
same cell radius is compared.
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Finally, in terms of cell size, it is clear that for all the results presented here, the impact
in terms of CDF, average maximum and minimum spectral efficiency is marginal which
corroborates the argument that the system is not interference bounded.

Table 6. Maximum spectral efficiency per user in different cell sizes. The best value for each algorithm
is are marked in bold type.

Parameters

Maximum Spectral Efficiency per User (in bps/Hz)

BPSO/GA
SPV–PSO SPVG–PSO

w/o VNS with VNS w/o VNS with VNS

K = 20, R = 1 Km 13.4015 29.3362 29.3362 29.3378 29.3515
K = 20, R = 500 m 12.9367 28.8354 28.9150 28.8825 28.9445
K = 20, R = 250 m 12.7704 28.7173 28.8393 28.7896 28.7380
K = 20, R = 100 m 13.1714 29.0950 29.0974 29.1499 29.2260

5.3. System Loading Impact on Performance

Figure 9 describes the empirical CDFs for different system loading scenarios: K = 20,
K = 40 and K = 60. These values represent three system loading scenarios which represent
low, medium and high user density. The main objective here is to determine whether the
higher density of users in the system implies more interference among them.

It is evident that RA, BPSOand GA suffer an impact in performance as the system
loading increases for the same cell size. However, that significant difference in performance
is not observed for the other algorithms, meaning that they can handle user density better
than the former three algorithms. Numerically, there is an 11 dB CDF shift from K = 20
users to K = 40 and a 7 dB shift from K = 40 to K = 60. Meanwhile, the performance
difference between K = 20 and K = 60 is less than a 0.1 dB shift.
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Figure 9. Empirical CDF for K = 20, K = 40 and K = 60 users in an R = 1000 m cell size scenario
with the maximum number for iterations set to 50 for all algorithms.
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6. Conclusions

This work presented six different heuristics to solve the pilot sequence allocation
problem in Massive MIMO systems. We optimized the heuristics parameters to achieve the
best performance in the discussed problem while still considering the computational time
constraints inherent to the problem’s nature.

We analyzed the impact of different scenario configurations on the performances of
the algorithms. The cell size impact analysis offered clear conclusions that the system is not
interference bounded and that the performance of SPV–PSO and all its derivations have far
better performance in terms of system spectral efficiency, as well as average maximum and
minimum spectral efficiency when compared to the RA, BPSO and GA solutions.

We further investigated the impact of system loading and found that RA, BPSO and
GA solutions are directly affected by user density, while the other algorithms presented
a more robust performance. We found that average minimum spectral efficiency may be
increased in up to 1.7 million % when compared from RA, BPSO and GA solutions to a
SPV–PSO-based one during the described investigations.

Finally, it is important to point out that SPV–PSO with ω = 0.1, vmax = 3, c1 = 5 and
c = 1 achieved the best results for the R = 1000 m and K = 20 users scenario.

7. Future Works

Future works include testing and comparing more different approaches to solve this
problem such as: micro GAs, Differential Evolution, such as in [25], other versions of the
PSO, as in [26,27], greed search algorithms, supervised learning with the Convolutional
Neural network (CNN) and Multilayer Perceptron (MLP) as well as further investigating
at which cell size or path-loss configurations the system becomes interference bounded.
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