Chemical Modification of Pullulan Exopolysaccharide by Grafting Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) via Click Chemistry (2020)
- Authors:
- USP affiliated authors: LACERDA, TALITA MARTINS - EEL ; SANTOS, JÚLIO CÉSAR DOS - EEL ; SAMPAIO, SIMONE DE FÁTIMA MEDEIROS - EEL ; SANTOS, AMILTON MARTINS DOS - EEL ; CARVALHO, LAYDE TEIXEIRA DE - EEL ; MORAES, RODOLFO PACHECO DE - FM
- Unidades: EEL; FM
- DOI: 10.3390/polym12112527
- Assunto: POLÍMEROS (MATERIAIS)
- Keywords: pullulan; PHBHV; graft copolymers; polysaccharide; chemical modification
- Agências de fomento:
- Language: Inglês
- Abstract: Biodegradable and biocompatible copolymers have been often studied for the development of biomaterials for drug delivery systems. In this context, this work reports the synthesis and characterization of a novel pullulan-g-poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (Pull-g-PHBHV) graft copolymer using click chemistry. Well-defined and functional pullulan backbones containing azide groups (PullN3) previously prepared by our group were successfully used for this purpose and propargyl-terminated poly(3-hydroxybutyrate-co-3-hydroxyvalerate) was prepared via transesterification using propargyl alcohol as a chain transfer agent. By an alkyne-azide cycloaddition reaction catalyzed by copper (Cu (I)) (CuAAC), the graft copolymer Pull-g-PHBHV was obtained. The chemical structures of the polymers were accessed by 1H NMR and 13C NMR FTIR. Disappearance of the bands referring to the main bonds evidenced success in the grafting reaction. Besides that, DRX, DSC and TGA were used in order to access the changes in crystallinity and thermal behavior of the material. The remaining crystallinity of the Pull-g-PHBHV structure evidences the presence of PHBHV. Pull-g-PHBHV presented lower degradation maximum temperature values than the starting materials, indicating its minor thermal stability. Finally, the synthesized material is an innovative biopolymer, which has never been reported in the previous literature. It is a bio-derived and biodegradable polymer, chemically modified, resulting in interesting properties which can be useful for their further applications as biomedical systems for controlled delivery, for example.
- Imprenta:
- Source:
- Este periódico é de acesso aberto
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: gold
- Licença: cc-by
-
ABNT
CARVALHO, Layde T. et al. Chemical Modification of Pullulan Exopolysaccharide by Grafting Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) via Click Chemistry. Polymers, v. 12, n. 2527 , p. 1-14, 2020Tradução . . Disponível em: https://doi.org/10.3390/polym12112527. Acesso em: 04 ago. 2025. -
APA
Carvalho, L. T., Paula, M. L. da S. de, Moraes, R. M. de, Alves, G. M., Lacerda, T. M., Santos, J. C., et al. (2020). Chemical Modification of Pullulan Exopolysaccharide by Grafting Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) via Click Chemistry. Polymers, 12( 2527 ), 1-14. doi:10.3390/polym12112527 -
NLM
Carvalho LT, Paula ML da S de, Moraes RM de, Alves GM, Lacerda TM, Santos JC, Santos AM dos, Medeiros S de F. Chemical Modification of Pullulan Exopolysaccharide by Grafting Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) via Click Chemistry [Internet]. Polymers. 2020 ;12( 2527 ): 1-14.[citado 2025 ago. 04 ] Available from: https://doi.org/10.3390/polym12112527 -
Vancouver
Carvalho LT, Paula ML da S de, Moraes RM de, Alves GM, Lacerda TM, Santos JC, Santos AM dos, Medeiros S de F. Chemical Modification of Pullulan Exopolysaccharide by Grafting Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBHV) via Click Chemistry [Internet]. Polymers. 2020 ;12( 2527 ): 1-14.[citado 2025 ago. 04 ] Available from: https://doi.org/10.3390/polym12112527 - Synthesis and Self-Assembly of Poly(N-Vinylcaprolactam)-b-Poly(ε-Caprolactone) Block Copolymers via the Combination of RAFT/MADIX and Ring-Opening Polymerizations
- Synthesis of amphiphilic pullulan-graft-poly(ε-caprolactone) via click chemistry
- Biomimetic Biomaterials Based on Polysaccharides: Recent Progress and Future Perspectives
- Development of pullulan-based carriers for controlled release of hydrophobic ingredients
- Synthesis and characterization of stable aqueous dispersion of functionalized double-coated iron oxide nanoparticles
- Biocompatible and multi-responsive poly(N-vinylcaprolactam)-based microgels: the role of acidic comonomers in the colloidal properties and phase transition as a function of temperature an pH
- Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides
- Electrospun poly(NVCL-co-AA) fibers as potential thermo-and pH-sensitive agents for controlled release of hydrophobic drugs
- Synthesis and characterization of poly( <i>N</i> -vinylcaprolactam)-based spray-dried microparticles exhibiting temperature and pH-sensitive properties for controlled release of ketoprofen
- Hydrophilic drug release from electrospun membranes made out of thermo and pH-sensitive polymers
Informações sobre o DOI: 10.3390/polym12112527 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas