Hydrophilic drug release from electrospun membranes made out of thermo and pH-sensitive polymers (2022)
- Authors:
- USP affiliated authors: SAMPAIO, SIMONE DE FÁTIMA MEDEIROS - EEL ; SANTOS, AMILTON MARTINS DOS - EEL
- Unidade: EEL
- DOI: 10.1016/j.jddst.2022.103284
- Assunto: POLÍMEROS (QUÍMICA ORGÂNICA)
- Agências de fomento:
- Language: Inglês
- Abstract: Electrospun fibers of the thermo-and pH sensitive poly(N-vinylcaprolactam-co-acrylic acid) (Poly(NVCL-co-AA) loaded with 10% and 30 wt% caffeine (Caf) were obtained by electrospinning and evaluated as potential drug delivery systems. Caffeine was used as a hydrophilic drug model, and poly(NVCL-co-AA) containing either 20 or 30 mol% AA was used as a carrier. The fibers morphology, as well as, their interaction with caffeine, were studied using different analytical techniques. The cytotoxicity of the different obtained fibers was evaluated by cell viability assays using 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) and mouse embryonic fibroblasts cell line (MEF cells). Caffeine release was studied at temperatures of 25 °C and 42 °C and pH of 1.2 and 7.4. Beadless copolymer fibers with diameters ranging from 1 μm to 2 μm were obtained. The addition of caffeine, which was in crystalline form after being encapsulated in the fibers, resulted in an increase of fiber diameter. The obtained membranes were found to be not cytotoxic. The entrapment of caffeine was greater for the copolymer containing 30 mol% AA due to a greater affinity of AA to caffeine. At a pH of 1.2 and at both temperatures of 25 °C and 42 °C, as well as, at a pH of 7.4 and a temperature of 42 °C, a Fickian diffusion mechanism for all copolymer fiber mats was observed. At a pH of 7.4 and 25 °C the release profile showed a high rate and followed a zero-order model, due to the fast dissolution of caffeine in water. These results indicated that thermo-and pH-sensitive poly(NVCL-co-AA) are promising candidates for controlled release of hydrophilic drugs.
- Imprenta:
- Source:
- Título: Journal of drug delivery science and technology
- ISSN: 17732247
- Volume/Número/Paginação/Ano: v.71, p.103284-, 2022
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
- Licença: cc-by-nc-nd
-
ABNT
STA, Marwa et al. Hydrophilic drug release from electrospun membranes made out of thermo and pH-sensitive polymers. Journal of drug delivery science and technology, v. 71, p. 103284-, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jddst.2022.103284. Acesso em: 30 dez. 2025. -
APA
Sta, M., Tada, D. B., Medeiros, S. de F., Santos, A. M. dos, & Demarquette, N. R. (2022). Hydrophilic drug release from electrospun membranes made out of thermo and pH-sensitive polymers. Journal of drug delivery science and technology, 71, 103284-. doi:10.1016/j.jddst.2022.103284 -
NLM
Sta M, Tada DB, Medeiros S de F, Santos AM dos, Demarquette NR. Hydrophilic drug release from electrospun membranes made out of thermo and pH-sensitive polymers [Internet]. Journal of drug delivery science and technology. 2022 ;71 103284-.[citado 2025 dez. 30 ] Available from: https://doi.org/10.1016/j.jddst.2022.103284 -
Vancouver
Sta M, Tada DB, Medeiros S de F, Santos AM dos, Demarquette NR. Hydrophilic drug release from electrospun membranes made out of thermo and pH-sensitive polymers [Internet]. Journal of drug delivery science and technology. 2022 ;71 103284-.[citado 2025 dez. 30 ] Available from: https://doi.org/10.1016/j.jddst.2022.103284 - Biocompatible and multi-responsive poly(N-vinylcaprolactam)-based microgels: the role of acidic comonomers in the colloidal properties and phase transition as a function of temperature an pH
- Electrospun poly(NVCL-co-AA) fibers as potential thermo-and pH-sensitive agents for controlled release of hydrophobic drugs
- Thermo- and pH-responsive poly(NVCL-co-IA-co-EGDMA)-based hydrogel nanoparticles for controlled release of ketoprofen
- Synthesis and characterization of stable aqueous dispersion of functionalized double-coated iron oxide nanoparticles
- Synthesis and characterization of poly( <i>N</i> -vinylcaprolactam)-based spray-dried microparticles exhibiting temperature and pH-sensitive properties for controlled release of ketoprofen
- Poly(NVCL-co-IA-co-EGDMA)-based hydrogel nanoparticles for drug controlled delivery: a study of colloidal stability and stimuli-responsive behavior
- Fabrication of biocompatible and stimuli-responsive hybrid microgels with magnetic properties via aqueous precipitation polymerization
- Synthesis of amphiphilic poly(ε-caprolactone)-b-poly(N-vinylcaprolactam) block copolymers via the combination of Ring-Opening and RAFT copolymerizations and Click Chemistry
- Synthesis of amphiphilic poly(ɛ-caprolactone)-b-poly(n-vinylcaprolactam) block copolymers via the combination of raft/madix and ring-opening polimerizations
- Design and characterization of PNVCL-based nanofibers and evaluation of their potential applications as scaffolds for surface drug delivery of hydrophobic drugs
Informações sobre o DOI: 10.1016/j.jddst.2022.103284 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
