Multimodal intent classification with incomplete modalities using text embedding propagation (2021)
- Authors:
- USP affiliated authors: MARCACINI, RICARDO MARCONDES - ICMC ; GONZAGA, VICTOR MACHADO - ICMC
- Unidade: ICMC
- DOI: 10.1145/3470482.3479636
- Subjects: APRENDIZADO COMPUTACIONAL; MINERAÇÃO DE DADOS; RECONHECIMENTO DE TEXTO; RECONHECIMENTO DE IMAGEM; MÍDIAS SOCIAIS
- Keywords: social networks; multimodal learning; network embedding
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Proceedings
- Conference titles: Brazilian Symposium on Multimedia and the Web - WebMedia
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
GONZAGA, Victor Machado e MURRUGARRA-LLERENA, Nils e MARCACINI, Ricardo Marcondes. Multimodal intent classification with incomplete modalities using text embedding propagation. 2021, Anais.. New York: ACM, 2021. Disponível em: https://doi.org/10.1145/3470482.3479636. Acesso em: 24 jan. 2026. -
APA
Gonzaga, V. M., Murrugarra-Llerena, N., & Marcacini, R. M. (2021). Multimodal intent classification with incomplete modalities using text embedding propagation. In Proceedings. New York: ACM. doi:10.1145/3470482.3479636 -
NLM
Gonzaga VM, Murrugarra-Llerena N, Marcacini RM. Multimodal intent classification with incomplete modalities using text embedding propagation [Internet]. Proceedings. 2021 ;[citado 2026 jan. 24 ] Available from: https://doi.org/10.1145/3470482.3479636 -
Vancouver
Gonzaga VM, Murrugarra-Llerena N, Marcacini RM. Multimodal intent classification with incomplete modalities using text embedding propagation [Internet]. Proceedings. 2021 ;[citado 2026 jan. 24 ] Available from: https://doi.org/10.1145/3470482.3479636 - iRisk: a scalable microservice for classifying issue risks based on crowdsourced App reviews
- Characterization of co-authorship networks of CNPq productivity fellows: an approach based on data science
- Monitoring temporal dynamics of issues in crowdsourced user reviews and their impact on mobile App updates
- Aprendizado não supervisionado de hierarquias de tópicos a partir de coleções textuais dinâmicas
- Combining prompt-based language models and weak supervision for labeling named entity recognition on legal documents
- Complaint analysis in digital banks: topic modeling based on large language model
- Legal document segmentation and labeling through named entity recognition approaches
- Issue detection and prioritization based on mobile application reviews
- Complaint analysis in fintech domain: a case study in Brazilian brokerage firms
- Opinion mining for App reviews: identifying and prioritizing emerging issues for software maintenance and evolution
Informações sobre o DOI: 10.1145/3470482.3479636 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3048904.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
