Assessing rainfall spatial variability in the Brazilian savanna region with TMPA rainfall dataset (2021)
- Authors:
- Autor USP: BAZAME, HELIZANI COUTO - ESALQ
- Unidade: ESALQ
- DOI: 10.1016/j.jsames.2021.103482
- Subjects: CERRADO; CHUVA; COLETA DE DADOS; METEOROLOGIA COM SATÉLITE; MUDANÇA CLIMÁTICA; PLUVIOMETRIA; VARIABILIDADE ESPACIAL
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of South American Earth Sciences
- ISSN: 0895-9811
- Volume/Número/Paginação/Ano: v. 111, art.103482, p. 1-8, July 2021
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
ALTHOFF, Daniel et al. Assessing rainfall spatial variability in the Brazilian savanna region with TMPA rainfall dataset. Journal of South American Earth Sciences, v. 111, p. 1-8, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jsames.2021.103482. Acesso em: 28 dez. 2025. -
APA
Althoff, D., Bazame, H. C., Filgueiras, R., & Rodrigues, L. N. (2021). Assessing rainfall spatial variability in the Brazilian savanna region with TMPA rainfall dataset. Journal of South American Earth Sciences, 111, 1-8. doi:10.1016/j.jsames.2021.103482 -
NLM
Althoff D, Bazame HC, Filgueiras R, Rodrigues LN. Assessing rainfall spatial variability in the Brazilian savanna region with TMPA rainfall dataset [Internet]. Journal of South American Earth Sciences. 2021 ; 111 1-8.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1016/j.jsames.2021.103482 -
Vancouver
Althoff D, Bazame HC, Filgueiras R, Rodrigues LN. Assessing rainfall spatial variability in the Brazilian savanna region with TMPA rainfall dataset [Internet]. Journal of South American Earth Sciences. 2021 ; 111 1-8.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1016/j.jsames.2021.103482 - Spectral sensors prove beneficial in determining nitrogen fertilizer needs of Urochloa brizantha cv. Xaraes grass in Brazil
- Modeling the net primary productivity: a study case in the Brazilian territory
- Improvement of Hargreaves-Samani reference evapotranspiration estimates with local calibration
- Quantification and classification of coffee fruits with computer vision
- Uncertainty quantification for hydrological models based on neural networks: the dropout ensemble
- Untangling hybrid hydrological models with explainable artificial intelligence
- Definition of optimal maize seeding rates based on the potential yield of management zones
- Detection, classification, and mapping of coffee fruits during harvest with computer vision
- Obtaining and validating high-density coffee yield data
- Detection of coffee fruits on tree branches using computer vision
Informações sobre o DOI: 10.1016/j.jsames.2021.103482 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
