Improvement of Hargreaves-Samani reference evapotranspiration estimates with local calibration (2019)
- Authors:
- Autor USP: BAZAME, HELIZANI COUTO - ESALQ
- Unidade: ESALQ
- DOI: 10.3390/w11112272
- Subjects: AGROMETEOROLOGIA; EVAPOTRANSPIRAÇÃO; IRRIGAÇÃO; BACIA DO RIO SÃO FRANCISCO
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
ALTHOFF, D et al. Improvement of Hargreaves-Samani reference evapotranspiration estimates with local calibration. Water, v. 11, p. 1-16, 2019Tradução . . Disponível em: https://doi.org/10.3390/w11112272. Acesso em: 13 fev. 2026. -
APA
Althoff, D., Santos, R. A. dos, Bazame, H. C., Cunha, F. F. da, & Filgueiras, R. (2019). Improvement of Hargreaves-Samani reference evapotranspiration estimates with local calibration. Water, 11, 1-16. doi:10.3390/w11112272 -
NLM
Althoff D, Santos RA dos, Bazame HC, Cunha FF da, Filgueiras R. Improvement of Hargreaves-Samani reference evapotranspiration estimates with local calibration [Internet]. Water. 2019 ; 11 1-16.[citado 2026 fev. 13 ] Available from: https://doi.org/10.3390/w11112272 -
Vancouver
Althoff D, Santos RA dos, Bazame HC, Cunha FF da, Filgueiras R. Improvement of Hargreaves-Samani reference evapotranspiration estimates with local calibration [Internet]. Water. 2019 ; 11 1-16.[citado 2026 fev. 13 ] Available from: https://doi.org/10.3390/w11112272 - Assessing rainfall spatial variability in the Brazilian savanna region with TMPA rainfall dataset
- Uncertainty quantification for hydrological models based on neural networks: the dropout ensemble
- Quantification and classification of coffee fruits with computer vision
- Modeling the net primary productivity: a study case in the Brazilian territory
- Spectral sensors prove beneficial in determining nitrogen fertilizer needs of Urochloa brizantha cv. Xaraes grass in Brazil
- Untangling hybrid hydrological models with explainable artificial intelligence
- Definition of optimal maize seeding rates based on the potential yield of management zones
- Detection of coffee fruits on tree branches using computer vision
- Detection, classification, and mapping of coffee fruits during harvest with computer vision
- Obtaining and validating high-density coffee yield data
Informações sobre o DOI: 10.3390/w11112272 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2980397-Improvement of Ha... | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
