Definition of optimal maize seeding rates based on the potential yield of management zones (2021)
- Authors:
- USP affiliated authors: MOLIN, JOSE PAULO - ESALQ ; BAZAME, HELIZANI COUTO - ESALQ ; CORRÊDO, LUCAS DE PAULA - ESALQ
- Unidade: ESALQ
- DOI: 10.3390/agriculture11100911
- Subjects: AGRICULTURA DE PRECISÃO; DENSIDADE DE SEMEADURA; MILHO; VARIABILIDADE ESPACIAL
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Agriculture
- ISSN: 2077-0472
- Volume/Número/Paginação/Ano: v. 11, art. 911, p. 1-16, 2021
- Este periódico é de acesso aberto
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: gold
- Licença: cc-by
-
ABNT
ANSELMI, Adriano Adelcino et al. Definition of optimal maize seeding rates based on the potential yield of management zones. Agriculture, v. 11, p. 1-16, 2021Tradução . . Disponível em: https://doi.org/10.3390/agriculture11100911. Acesso em: 28 dez. 2025. -
APA
Anselmi, A. A., Molin, J. P., Bazame, H. C., & Corrêdo, L. de P. (2021). Definition of optimal maize seeding rates based on the potential yield of management zones. Agriculture, 11, 1-16. doi:10.3390/agriculture11100911 -
NLM
Anselmi AA, Molin JP, Bazame HC, Corrêdo L de P. Definition of optimal maize seeding rates based on the potential yield of management zones [Internet]. Agriculture. 2021 ; 11 1-16.[citado 2025 dez. 28 ] Available from: https://doi.org/10.3390/agriculture11100911 -
Vancouver
Anselmi AA, Molin JP, Bazame HC, Corrêdo L de P. Definition of optimal maize seeding rates based on the potential yield of management zones [Internet]. Agriculture. 2021 ; 11 1-16.[citado 2025 dez. 28 ] Available from: https://doi.org/10.3390/agriculture11100911 - Mapping coffee yield with computer vision
- Evaluation of Minimum Preparation Sampling Strategies for Sugarcane Quality Prediction by vis-NIR Spectroscopy
- Spatial variability mapping of sugarcane qualitative attributes
- Precision agriculture and the digital contributions for site-specific management of the fields
- Near-infrared spectroscopy as a tool for monitoring the spatial variability of sugarcane quality in the fields
- Detection, classification, and mapping of coffee fruits during harvest with computer vision
- Obtaining and validating high-density coffee yield data
- Detection of coffee fruits on tree branches using computer vision
- Assessing rainfall spatial variability in the Brazilian savanna region with TMPA rainfall dataset
- Spectral sensors prove beneficial in determining nitrogen fertilizer needs of Urochloa brizantha cv. Xaraes grass in Brazil
Informações sobre o DOI: 10.3390/agriculture11100911 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
