Mapping coffee yield with computer vision (2022)
- Authors:
- USP affiliated authors: MOLIN, JOSE PAULO - ESALQ ; BAZAME, HELIZANI COUTO - ESALQ ; MARTELLO, MAURÍCIO - ESALQ ; CORRÊDO, LUCAS DE PAULA - ESALQ
- Unidade: ESALQ
- DOI: 10.1007/s11119-022-09924-0
- Subjects: AGRICULTURA DE PRECISÃO; APRENDIZADO COMPUTACIONAL; CAFÉ; COLHEDORAS; VISÃO COMPUTACIONAL
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Heidelberg
- Date published: 2022
- Source:
- Título: Precision Agriculture
- ISSN: 1385-2256
- Volume/Número/Paginação/Ano: p. 1-16, June 2022
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
BAZAME, Helizani Couto et al. Mapping coffee yield with computer vision. Precision Agriculture, p. 1-16, 2022Tradução . . Disponível em: https://doi.org/10.1007/s11119-022-09924-0. Acesso em: 28 dez. 2025. -
APA
Bazame, H. C., Molin, J. P., Althoff, D., Martello, M., & Corrêdo, L. de P. (2022). Mapping coffee yield with computer vision. Precision Agriculture, 1-16. doi:10.1007/s11119-022-09924-0 -
NLM
Bazame HC, Molin JP, Althoff D, Martello M, Corrêdo L de P. Mapping coffee yield with computer vision [Internet]. Precision Agriculture. 2022 ; 1-16.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1007/s11119-022-09924-0 -
Vancouver
Bazame HC, Molin JP, Althoff D, Martello M, Corrêdo L de P. Mapping coffee yield with computer vision [Internet]. Precision Agriculture. 2022 ; 1-16.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1007/s11119-022-09924-0 - Definition of optimal maize seeding rates based on the potential yield of management zones
- Detection, classification, and mapping of coffee fruits during harvest with computer vision
- Obtaining and validating high-density coffee yield data
- Detection of coffee fruits on tree branches using computer vision
- Evaluation of Minimum Preparation Sampling Strategies for Sugarcane Quality Prediction by vis-NIR Spectroscopy
- Precision agriculture and the digital contributions for site-specific management of the fields
- Use of active sensors in coffee cultivation for monitoring crop yield
- Spatial variability mapping of sugarcane qualitative attributes
- Energy efficiency of variable rate fertilizer application in coffee production in Brazil
- Near-infrared spectroscopy as a tool for monitoring the spatial variability of sugarcane quality in the fields
Informações sobre o DOI: 10.1007/s11119-022-09924-0 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3082173-Mapping_coffee_yi... |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
