Detection of coffee fruits on tree branches using computer vision (2023)
- Authors:
- USP affiliated authors: MOLIN, JOSE PAULO - ESALQ ; BAZAME, HELIZANI COUTO - ESALQ ; MARTELLO, MAURÍCIO - ESALQ
- Unidade: ESALQ
- DOI: 10.1590/1678-992X-2022-0064
- Subjects: AGRICULTURA DE PRECISÃO; ALGORITMOS; APRENDIZADO COMPUTACIONAL; CAFÉ; FRUTO; MATURAÇÃO VEGETAL; VISÃO COMPUTACIONAL
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Piracicaba
- Date published: 2023
- Source:
- Título: Scientia Agricola
- ISSN: 1678-992X
- Volume/Número/Paginação/Ano: v. 80, art. e20220064, p. 1-8, 2023
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BAZAME, Helizani Couto et al. Detection of coffee fruits on tree branches using computer vision. Scientia Agricola, v. 80, p. 1-8, 2023Tradução . . Disponível em: https://doi.org/10.1590/1678-992X-2022-0064. Acesso em: 12 fev. 2026. -
APA
Bazame, H. C., Molin, J. P., Althoff, D., & Martello, M. (2023). Detection of coffee fruits on tree branches using computer vision. Scientia Agricola, 80, 1-8. doi:10.1590/1678-992X-2022-0064 -
NLM
Bazame HC, Molin JP, Althoff D, Martello M. Detection of coffee fruits on tree branches using computer vision [Internet]. Scientia Agricola. 2023 ; 80 1-8.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1590/1678-992X-2022-0064 -
Vancouver
Bazame HC, Molin JP, Althoff D, Martello M. Detection of coffee fruits on tree branches using computer vision [Internet]. Scientia Agricola. 2023 ; 80 1-8.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1590/1678-992X-2022-0064 - Detection, classification, and mapping of coffee fruits during harvest with computer vision
- Obtaining and validating high-density coffee yield data
- Mapping coffee yield with computer vision
- Use of active sensors in coffee cultivation for monitoring crop yield
- Definition of optimal maize seeding rates based on the potential yield of management zones
- Precision agriculture and the digital contributions for site-specific management of the fields
- Energy efficiency of variable rate fertilizer application in coffee production in Brazil
- Assessing rainfall spatial variability in the Brazilian savanna region with TMPA rainfall dataset
- Uncertainty quantification for hydrological models based on neural networks: the dropout ensemble
- Quantification and classification of coffee fruits with computer vision
Informações sobre o DOI: 10.1590/1678-992X-2022-0064 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3097647-Detection_of_coff... | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
