Modeling the net primary productivity: a study case in the Brazilian territory (2019)
- Authors:
- Autor USP: BAZAME, HELIZANI COUTO - ESALQ
- Unidade: ESALQ
- DOI: 10.1007/s12524-019-01024-3
- Subjects: MODELOS MATEMÁTICOS; MONITORAMENTO AMBIENTAL; PRODUTIVIDADE; MODELOS MATEMÁTICOS; SENSORIAMENTO REMOTO
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of The Indian Society of Remote Sensing
- ISSN: 0255-660X
- Volume/Número/Paginação/Ano: v. 47, n. 10, p. 1727–1735, 2019
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
BAZAME, Helizani Couto et al. Modeling the net primary productivity: a study case in the Brazilian territory. Journal of The Indian Society of Remote Sensing, v. 47, n. 10, p. 1727–1735, 2019Tradução . . Disponível em: https://doi.org/10.1007/s12524-019-01024-3. Acesso em: 28 dez. 2025. -
APA
Bazame, H. C., Althoff, D., Filgueiras, R., Calijuri, M. L., & Oliveira, J. C. (2019). Modeling the net primary productivity: a study case in the Brazilian territory. Journal of The Indian Society of Remote Sensing, 47( 10), 1727–1735. doi:10.1007/s12524-019-01024-3 -
NLM
Bazame HC, Althoff D, Filgueiras R, Calijuri ML, Oliveira JC. Modeling the net primary productivity: a study case in the Brazilian territory [Internet]. Journal of The Indian Society of Remote Sensing. 2019 ; 47( 10): 1727–1735.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1007/s12524-019-01024-3 -
Vancouver
Bazame HC, Althoff D, Filgueiras R, Calijuri ML, Oliveira JC. Modeling the net primary productivity: a study case in the Brazilian territory [Internet]. Journal of The Indian Society of Remote Sensing. 2019 ; 47( 10): 1727–1735.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1007/s12524-019-01024-3 - Assessing rainfall spatial variability in the Brazilian savanna region with TMPA rainfall dataset
- Spectral sensors prove beneficial in determining nitrogen fertilizer needs of Urochloa brizantha cv. Xaraes grass in Brazil
- Improvement of Hargreaves-Samani reference evapotranspiration estimates with local calibration
- Quantification and classification of coffee fruits with computer vision
- Uncertainty quantification for hydrological models based on neural networks: the dropout ensemble
- Untangling hybrid hydrological models with explainable artificial intelligence
- Definition of optimal maize seeding rates based on the potential yield of management zones
- Detection, classification, and mapping of coffee fruits during harvest with computer vision
- Obtaining and validating high-density coffee yield data
- Detection of coffee fruits on tree branches using computer vision
Informações sobre o DOI: 10.1007/s12524-019-01024-3 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2953843-Modeling the Net ... |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
