Deep learning predicts underlying features on pathology images with therapeutic relevance for breast and gastric cancer (2020)
- Authors:
- Autor USP: MITROWSKY, RAFAEL ANDRES ROSALES - FFCLRP
- Unidade: FFCLRP
- DOI: 10.3390/cancers12123687
- Subjects: BIOMARCADORES; NEOPLASIAS; DNA; APRENDIZADO COMPUTACIONAL; TERAPÊUTICA MÉDICA; ALGORITMOS; CARCINOGÊNESE; IMUNOTERAPIA; RECOMBINAÇÃO GENÉTICA
- Keywords: Digital pathology; Deep learning; Mutational signature; Biomarker; DNA repair deficiency
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
VALIERIS, Renan et al. Deep learning predicts underlying features on pathology images with therapeutic relevance for breast and gastric cancer. Cancers, v. 12, n. 12, p. 1-12, 2020Tradução . . Disponível em: https://doi.org/10.3390/cancers12123687. Acesso em: 13 fev. 2026. -
APA
Valieris, R., Amaro, L., Osório, C. A. B. de T., Bueno, A. P., Mitrowsky, R. A. R., Carraro, D. M., et al. (2020). Deep learning predicts underlying features on pathology images with therapeutic relevance for breast and gastric cancer. Cancers, 12( 12), 1-12. doi:10.3390/cancers12123687 -
NLM
Valieris R, Amaro L, Osório CAB de T, Bueno AP, Mitrowsky RAR, Carraro DM, Nunes DN, Dias-Neto E, Silva IT da. Deep learning predicts underlying features on pathology images with therapeutic relevance for breast and gastric cancer [Internet]. Cancers. 2020 ; 12( 12): 1-12.[citado 2026 fev. 13 ] Available from: https://doi.org/10.3390/cancers12123687 -
Vancouver
Valieris R, Amaro L, Osório CAB de T, Bueno AP, Mitrowsky RAR, Carraro DM, Nunes DN, Dias-Neto E, Silva IT da. Deep learning predicts underlying features on pathology images with therapeutic relevance for breast and gastric cancer [Internet]. Cancers. 2020 ; 12( 12): 1-12.[citado 2026 fev. 13 ] Available from: https://doi.org/10.3390/cancers12123687 - HIV-1 integration landscape during latent and active infection
- Cálculo estocástico e aplicações em finanças
- A série de Hardy-Ramanujan-Rademacher para o número de participações de um inteiro positivo
- Bounding the speed of harris chains via Griffeath's maximal coupling
- Relating mutational signature exposures to clinical data in cancers via signeR 2.0
- Interacting vertex reinforced random walks on complete sub-graphs
- Identification of chromosomal translocation hotspots via scan statistics
- Weakly-supervised deep learning models enable HER2-low prediction from H &E stained slides
- Tracking SARS-CoV-2 variants of concern in wastewater: an assessment of nine computational tools using simulated genomic data
- Mutational signatures driven by epigenetic determinants enable the stratification of patients with gastric cancer for therapeutic intervention
Informações sobre o DOI: 10.3390/cancers12123687 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 003021279.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
