Mutational signatures driven by epigenetic determinants enable the stratification of patients with gastric cancer for therapeutic intervention (2021)
- Authors:
- USP affiliated authors: MITROWSKY, RAFAEL ANDRES ROSALES - FFCLRP ; DIAS NETO, EMMANUEL - Interunidades em Bioinformática
- Unidades: FFCLRP; Interunidades em Bioinformática
- DOI: 10.3390/cancers13030490
- Subjects: MUTAÇÃO GENÉTICA; NEOPLASIAS GÁSTRICAS; PROGNÓSTICO; REPARAÇÃO DE DNA; FENÓTIPOS; GENÉTICA
- Keywords: Mutational signature; Gastric cancer; DNA mismatch repair; Prognosis
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BUTTURA, Jaqueline Ramalho et al. Mutational signatures driven by epigenetic determinants enable the stratification of patients with gastric cancer for therapeutic intervention. Cancers, v. 13, n. 3, p. 1-21, 2021Tradução . . Disponível em: https://doi.org/10.3390/cancers13030490. Acesso em: 13 fev. 2026. -
APA
Buttura, J. R., Santos, M. N. P., Valieris, R., Drummond, R. D., Defelicibus, A., Lima, J. P., et al. (2021). Mutational signatures driven by epigenetic determinants enable the stratification of patients with gastric cancer for therapeutic intervention. Cancers, 13( 3), 1-21. doi:10.3390/cancers13030490 -
NLM
Buttura JR, Santos MNP, Valieris R, Drummond RD, Defelicibus A, Lima JP, Calsavara VF, Freitas HC, Mitrowsky RAR, Dias-Neto E. Mutational signatures driven by epigenetic determinants enable the stratification of patients with gastric cancer for therapeutic intervention [Internet]. Cancers. 2021 ; 13( 3): 1-21.[citado 2026 fev. 13 ] Available from: https://doi.org/10.3390/cancers13030490 -
Vancouver
Buttura JR, Santos MNP, Valieris R, Drummond RD, Defelicibus A, Lima JP, Calsavara VF, Freitas HC, Mitrowsky RAR, Dias-Neto E. Mutational signatures driven by epigenetic determinants enable the stratification of patients with gastric cancer for therapeutic intervention [Internet]. Cancers. 2021 ; 13( 3): 1-21.[citado 2026 fev. 13 ] Available from: https://doi.org/10.3390/cancers13030490 - A mixture model for determining SARS-Cov-2 variant composition in pooled samples
- HIV-1 integration landscape during latent and active infection
- Cálculo estocástico e aplicações em finanças
- A série de Hardy-Ramanujan-Rademacher para o número de participações de um inteiro positivo
- Bounding the speed of harris chains via Griffeath's maximal coupling
- Relating mutational signature exposures to clinical data in cancers via signeR 2.0
- Interacting vertex reinforced random walks on complete sub-graphs
- Deep learning predicts underlying features on pathology images with therapeutic relevance for breast and gastric cancer
- Identification of chromosomal translocation hotspots via scan statistics
- Weakly-supervised deep learning models enable HER2-low prediction from H &E stained slides
Informações sobre o DOI: 10.3390/cancers13030490 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 003021887.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
