Tracking SARS-CoV-2 variants of concern in wastewater: an assessment of nine computational tools using simulated genomic data (2024)
- Authors:
- Sutcliffe, Steven G.
- Kraemer, Susanne A.
- Ellmen, Isaac
- Knapp, Jennifer J.
- Overton, Alyssa K.
- Nash, Delaney
- Nissimov, Jozef I.
- Charles, Trevor C.
- Dreifuss, David
- Topolsky, Ivan
- Baykal, Pelin I.
- Fuhrmann, Lara
- Jablonski, Kim P.
- Beerenwinkel, Niko
- Levy, Joshua I.
- Olabode, Abayomi S.
- Becker, Devan G.
- Gugan, Gopi
- Brintnell, Erin
- Poon, Art F. Y.
- Valieris, Renan
- Drummond, Rodrigo Duarte
- Defelicibus, Alexandre
- Dias Neto, Emmanuel
- Mitrowsky, Rafael Andres Rosales

- Silva, Israel Tojal da

- Orfanou, Aspasia
- Psomopoulos, Fotis
- Pechlivanis, Nikolaos
- Pipes, Lenore
- Chen, Zihao
- Baaijens, Jasmijn A.
- Baym, Michael
- Shapiro, B. Jesse
- USP affiliated authors: MITROWSKY, RAFAEL ANDRES ROSALES - FFCLRP ; SILVA, ISRAEL TOJAL DA - ICMC
- Unidades: FFCLRP; ICMC
- DOI: 10.1099/mgen.0.001249
- Subjects: COVID-19; BIOINFORMÁTICA; GENOMAS; GENÔMICA; ÁGUAS RESIDUÁRIAS
- Keywords: Benchmark; Environmental; Sequencing; Surveillance; Wastewater
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Microbial Genomics
- ISSN: 2057-5858
- Volume/Número/Paginação/Ano: v. 10, n. 5, art. 001249, p. 1-13, 2024
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
SUTCLIFFE, Steven G. et al. Tracking SARS-CoV-2 variants of concern in wastewater: an assessment of nine computational tools using simulated genomic data. Microbial Genomics, v. 10, n. 5, p. 1-13, 2024Tradução . . Disponível em: https://doi.org/10.1099/mgen.0.001249. Acesso em: 14 fev. 2026. -
APA
Sutcliffe, S. G., Kraemer, S. A., Ellmen, I., Knapp, J. J., Overton, A. K., Nash, D., et al. (2024). Tracking SARS-CoV-2 variants of concern in wastewater: an assessment of nine computational tools using simulated genomic data. Microbial Genomics, 10( 5), 1-13. doi:10.1099/mgen.0.001249 -
NLM
Sutcliffe SG, Kraemer SA, Ellmen I, Knapp JJ, Overton AK, Nash D, Nissimov JI, Charles TC, Dreifuss D, Topolsky I, Baykal PI, Fuhrmann L, Jablonski KP, Beerenwinkel N, Levy JI, Olabode AS, Becker DG, Gugan G, Brintnell E, Poon AFY, Valieris R, Drummond RD, Defelicibus A, Dias Neto E, Mitrowsky RAR, Silva IT da, Orfanou A, Psomopoulos F, Pechlivanis N, Pipes L, Chen Z, Baaijens JA, Baym M, Shapiro BJ. Tracking SARS-CoV-2 variants of concern in wastewater: an assessment of nine computational tools using simulated genomic data [Internet]. Microbial Genomics. 2024 ; 10( 5): 1-13.[citado 2026 fev. 14 ] Available from: https://doi.org/10.1099/mgen.0.001249 -
Vancouver
Sutcliffe SG, Kraemer SA, Ellmen I, Knapp JJ, Overton AK, Nash D, Nissimov JI, Charles TC, Dreifuss D, Topolsky I, Baykal PI, Fuhrmann L, Jablonski KP, Beerenwinkel N, Levy JI, Olabode AS, Becker DG, Gugan G, Brintnell E, Poon AFY, Valieris R, Drummond RD, Defelicibus A, Dias Neto E, Mitrowsky RAR, Silva IT da, Orfanou A, Psomopoulos F, Pechlivanis N, Pipes L, Chen Z, Baaijens JA, Baym M, Shapiro BJ. Tracking SARS-CoV-2 variants of concern in wastewater: an assessment of nine computational tools using simulated genomic data [Internet]. Microbial Genomics. 2024 ; 10( 5): 1-13.[citado 2026 fev. 14 ] Available from: https://doi.org/10.1099/mgen.0.001249 - A mixture model for determining SARS-Cov-2 variant composition in pooled samples
- Uma plataforma computacional para análise de expressão diferencial múltipla
- HIV-1 integration landscape during latent and active infection
- Cálculo estocástico e aplicações em finanças
- A série de Hardy-Ramanujan-Rademacher para o número de participações de um inteiro positivo
- Bounding the speed of harris chains via Griffeath's maximal coupling
- Relating mutational signature exposures to clinical data in cancers via signeR 2.0
- Interacting vertex reinforced random walks on complete sub-graphs
- Deep learning predicts underlying features on pathology images with therapeutic relevance for breast and gastric cancer
- Identification of chromosomal translocation hotspots via scan statistics
Informações sobre o DOI: 10.1099/mgen.0.001249 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 003224201.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
