Evaluating multiple user interactions for ranking personalization using ensemble methods (2018)
- Authors:
- Autor USP: MANZATO, MARCELO GARCIA - ICMC
- Unidade: ICMC
- DOI: 10.18293/SEKE2018-0112
- Subjects: WORLD WIDE WEB; RECONHECIMENTO DE PADRÕES; SISTEMAS DE INFORMAÇÃO
- Keywords: recommender system; multimodal; user interaction
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: KSI Research Inc. and Knowledge Systems Institute Graduate School
- Publisher place: Pittsburgh
- Date published: 2018
- Source:
- Título: Proceedings
- ISSN: 2325-9000
- Conference titles: International Conference on Software Engineering & Knowledge Engineering- SEKE
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
DURÃO, Frederico Araujo et al. Evaluating multiple user interactions for ranking personalization using ensemble methods. 2018, Anais.. Pittsburgh: KSI Research Inc. and Knowledge Systems Institute Graduate School, 2018. Disponível em: https://doi.org/10.18293/SEKE2018-0112. Acesso em: 21 jan. 2026. -
APA
Durão, F. A., Cabral, B. S., Beltrão, R. D., & Manzato, M. G. (2018). Evaluating multiple user interactions for ranking personalization using ensemble methods. In Proceedings. Pittsburgh: KSI Research Inc. and Knowledge Systems Institute Graduate School. doi:10.18293/SEKE2018-0112 -
NLM
Durão FA, Cabral BS, Beltrão RD, Manzato MG. Evaluating multiple user interactions for ranking personalization using ensemble methods [Internet]. Proceedings. 2018 ;[citado 2026 jan. 21 ] Available from: https://doi.org/10.18293/SEKE2018-0112 -
Vancouver
Durão FA, Cabral BS, Beltrão RD, Manzato MG. Evaluating multiple user interactions for ranking personalization using ensemble methods [Internet]. Proceedings. 2018 ;[citado 2026 jan. 21 ] Available from: https://doi.org/10.18293/SEKE2018-0112 - CoBaR: confidence-based recommender
- Ensemble learning in recommender systems: combining multiple user interactions for ranking personalization
- Exploiting feature extraction techniques on users' reviews for movies recommendation
- Exploiting item representations for soft clustering recommendation
- Combining different metadata views for better recommendation accuracy
- An exploration of recommender systems explanation paradigms: generating and evaluating syntactic, semantic, and generative models with knowledge graphs : an extended abstract
- Evaluating the combination of multiple metadata types in movies recommendation
- Semantic organization of user's reviews applied in recommender systems
- Extended recommendation-by-explanation
- Exploiting personalized calibration and metrics for fairness recommendation
Informações sobre o DOI: 10.18293/SEKE2018-0112 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
