gSVD++: supporting implicit feedback on recommender systems with metadata awareness (2013)
- Autor:
- Autor USP: MANZATO, MARCELO GARCIA - ICMC
- Unidade: ICMC
- Subjects: MULTIMÍDIA INTERATIVA; WORLD WIDE WEB
- Language: Inglês
- Imprenta:
- ISBN: 9781450316569
- Source:
- Título: Proceedings
- Conference titles: Symposium on Applied Computing - SAC
-
ABNT
MANZATO, Marcelo Garcia. gSVD++: supporting implicit feedback on recommender systems with metadata awareness. 2013, Anais.. New York: ACM, 2013. . Acesso em: 27 dez. 2025. -
APA
Manzato, M. G. (2013). gSVD++: supporting implicit feedback on recommender systems with metadata awareness. In Proceedings. New York: ACM. -
NLM
Manzato MG. gSVD++: supporting implicit feedback on recommender systems with metadata awareness. Proceedings. 2013 ;[citado 2025 dez. 27 ] -
Vancouver
Manzato MG. gSVD++: supporting implicit feedback on recommender systems with metadata awareness. Proceedings. 2013 ;[citado 2025 dez. 27 ] - Uma arquitetura de personalização de conteúdo baseada em anotações do usuário
- Incorporating semantic item representations to soften the cold start problem
- A sentiment-based item description approach for kNN collaborative filtering
- Metadata in movies recommendation: a comparison among different approaches
- A collaborative filtering approach based on user's reviews
- Multimodal interactions in recommender systems: an ensembling approach
- An exploration of recommender systems explanation paradigms: generating and evaluating syntactic, semantic, and generative models with knowledge graphs : an extended abstract
- Evaluating the combination of multiple metadata types in movies recommendation
- Semantic organization of user's reviews applied in recommender systems
- CoBaR: confidence-based recommender
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
