Ensemble learning in recommender systems: combining multiple user interactions for ranking personalization (2014)
- Authors:
- Autor USP: MANZATO, MARCELO GARCIA - ICMC
- Unidade: ICMC
- DOI: 10.1145/2664551.2664556
- Subjects: MULTIMÍDIA INTERATIVA; WORLD WIDE WEB; RECUPERAÇÃO DA INFORMAÇÃO
- Language: Inglês
- Imprenta:
- ISBN: 9781450332309
- Source:
- Título: Proceedings
- Conference titles: Brazilian Symposium on Multimedia and the Web - WebMedia
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
FORTES, Arthur e MANZATO, Marcelo Garcia. Ensemble learning in recommender systems: combining multiple user interactions for ranking personalization. 2014, Anais.. New York: ACM, 2014. Disponível em: https://doi.org/10.1145/2664551.2664556. Acesso em: 12 jan. 2026. -
APA
Fortes, A., & Manzato, M. G. (2014). Ensemble learning in recommender systems: combining multiple user interactions for ranking personalization. In Proceedings. New York: ACM. doi:10.1145/2664551.2664556 -
NLM
Fortes A, Manzato MG. Ensemble learning in recommender systems: combining multiple user interactions for ranking personalization [Internet]. Proceedings. 2014 ;[citado 2026 jan. 12 ] Available from: https://doi.org/10.1145/2664551.2664556 -
Vancouver
Fortes A, Manzato MG. Ensemble learning in recommender systems: combining multiple user interactions for ranking personalization [Internet]. Proceedings. 2014 ;[citado 2026 jan. 12 ] Available from: https://doi.org/10.1145/2664551.2664556 - Extended recommendation-by-explanation
- An exploration of recommender systems explanation paradigms: generating and evaluating syntactic, semantic, and generative models with knowledge graphs : an extended abstract
- Personalized ranking of movies: evaluating different metadata types and recommendation strategies
- Evaluating multiple user interactions for ranking personalization using ensemble methods
- Adaptação de vídeo ao vivo apoiada em informações de contexto
- Collaborative filtering based on semantic distance among items
- Discovering latent factors from movies genres for enhanced recommendation
- Classificação de revisões para construção de perfis em sistemas de recomendação
- The participation of IntermidiaLab at the ImageCLEF 2012 Photo Annotation Task
- Evaluating the combination of multiple metadata types in movies recommendation
Informações sobre o DOI: 10.1145/2664551.2664556 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
