Exploiting item representations for soft clustering recommendation (2016)
- Authors:
- Autor USP: MANZATO, MARCELO GARCIA - ICMC
- Unidade: ICMC
- DOI: 10.1145/2976796.2976858
- Subjects: MULTIMÍDIA INTERATIVA; SISTEMAS DE INFORMAÇÃO; RECONHECIMENTO DE PADRÕES
- Keywords: Recommendation; Soft Clustering; Item Representation
- Language: Inglês
- Imprenta:
- Source:
- Título: Proceedings
- Conference titles: Brazilian Symposium on Multimedia and the Web - WebMedia
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
D'ADDIO, Rafael M e MANZATO, Marcelo Garcia. Exploiting item representations for soft clustering recommendation. 2016, Anais.. New York: ACM, 2016. Disponível em: https://doi.org/10.1145/2976796.2976858. Acesso em: 21 jan. 2026. -
APA
D'Addio, R. M., & Manzato, M. G. (2016). Exploiting item representations for soft clustering recommendation. In Proceedings. New York: ACM. doi:10.1145/2976796.2976858 -
NLM
D'Addio RM, Manzato MG. Exploiting item representations for soft clustering recommendation [Internet]. Proceedings. 2016 ;[citado 2026 jan. 21 ] Available from: https://doi.org/10.1145/2976796.2976858 -
Vancouver
D'Addio RM, Manzato MG. Exploiting item representations for soft clustering recommendation [Internet]. Proceedings. 2016 ;[citado 2026 jan. 21 ] Available from: https://doi.org/10.1145/2976796.2976858 - CoBaR: confidence-based recommender
- Ensemble learning in recommender systems: combining multiple user interactions for ranking personalization
- Exploiting feature extraction techniques on users' reviews for movies recommendation
- Combining different metadata views for better recommendation accuracy
- An exploration of recommender systems explanation paradigms: generating and evaluating syntactic, semantic, and generative models with knowledge graphs : an extended abstract
- Evaluating the combination of multiple metadata types in movies recommendation
- Semantic organization of user's reviews applied in recommender systems
- Extended recommendation-by-explanation
- Exploiting personalized calibration and metrics for fairness recommendation
- Metadata in movies recommendation: a comparison among different approaches
Informações sobre o DOI: 10.1145/2976796.2976858 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
