Ferulic acid transformation into the main vanilla aroma compounds by Amycolatopsis sp. ATCC 39116 (2016)
- Authors:
- Autor USP: OLIVEIRA, RICARDO PINHEIRO DE SOUZA - FCF
- Unidade: FCF
- DOI: 10.1007/s00253-015-7005-3
- Assunto: ANTIOXIDANTES
- Language: Inglês
- Imprenta:
- Source:
- Título do periódico: Applied Microbiology and Biotechnology
- ISSN: 0175-7598
- Volume/Número/Paginação/Ano: v. 100, n. 4, p. 1677-1689, 2016
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
RODRÍGUEZ, Noelia Pérez; OLIVEIRA, Ricardo Pinheiro de Souza; AGRASAR, Ana María Torrado; DOMÍNGUEZ, José Manuel. Ferulic acid transformation into the main vanilla aroma compounds by Amycolatopsis sp. ATCC 39116. Applied Microbiology and Biotechnology, New York, v. 100, n. 4, p. 1677-1689, 2016. Disponível em: < http://dx.doi.org/10.1007/s00253-015-7005-3 > DOI: 10.1007/s00253-015-7005-3. -
APA
Rodríguez, N. P., Oliveira, R. P. de S., Agrasar, A. M. T., & Domínguez, J. M. (2016). Ferulic acid transformation into the main vanilla aroma compounds by Amycolatopsis sp. ATCC 39116. Applied Microbiology and Biotechnology, 100( 4), 1677-1689. doi:10.1007/s00253-015-7005-3 -
NLM
Rodríguez NP, Oliveira RP de S, Agrasar AMT, Domínguez JM. Ferulic acid transformation into the main vanilla aroma compounds by Amycolatopsis sp. ATCC 39116 [Internet]. Applied Microbiology and Biotechnology. 2016 ; 100( 4): 1677-1689.Available from: http://dx.doi.org/10.1007/s00253-015-7005-3 -
Vancouver
Rodríguez NP, Oliveira RP de S, Agrasar AMT, Domínguez JM. Ferulic acid transformation into the main vanilla aroma compounds by Amycolatopsis sp. ATCC 39116 [Internet]. Applied Microbiology and Biotechnology. 2016 ; 100( 4): 1677-1689.Available from: http://dx.doi.org/10.1007/s00253-015-7005-3 - Screening for bacteriocin-like substance by patagonian strains and their ability to produce it through economic conditions
- Acidification kinetic and growth of Streptococcus thermophilus TA 040 and Lactococcus lactis CECT 4434 from whey
- Sperm cryopreservation with supplementation of α-tocopherol and ascorbic acid in freezing media increase sperm function and fertility rate in Atlantic salmon (Salmo salar)
- Production and partial purification of bacteriocin-like inhibitory substances (blis) with anticariogenic properties
- Inhibitory substances production by Lactobacillus plantarum ST16Pa cultured in hydrolyzed cheese whey supplemented with soybean flour and their antimicrobial efficiency as biopreservatives on fresh chicken meat
- Produtos de origem microbiana de interesse farmacêutico, alimentar e ambiental
- Development of a high-yielding bioprocess for 11-alpha hydroxylation of canrenone under conditions of oxygen-enriched air supply
- Production of bacteriocin-like inhibitory substances (BLIS) by bifidobacterium lactis using whey as a substrate
- Use of vine-trimming wastes as carrier for amycolatopsis sp. to produce vanillin, vanillyl alcohol, and vanillic acid
- Media optimization of bacteriocin ST22CH production by Lactobacillus Sakei ST22CH isolated from salpicão, a traditional meat-product from Portugal
Informações sobre o DOI: 10.1007/s00253-015-7005-3 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
Referências citadas na obra
Asaff Torres A, De la Torre Martínez M, Macias Ochoa RM (2008) Proceso para producir vainillina a partir de microorganismos inmovilizados por cultivo de superficie. Patent WO 2008/130210, 30th October 2008 |
---|
Converti A, Aliakbarian B, Domínguez JM, Bustos Vázquez G, Perego P (2010) Microbial production of biovanillin. Braz J Microbiol 41:519–530. doi: 10.1590/S1517-83822010000300001 |
De Paiva LB, Goldbeck R, Dantas W, Squina FM (2013) Ferulic acid and derivatives: molecules with potential application in the pharmaceutical field. Braz J Pharmacol Sci 49:396–411. doi: 10.1590/S1984-82502013000300002 |
Fleige C, Steinbüchel A (2014) Construction of expression vectors for metabolic engineering of the vanillin-producing actinomycete Amycolatopsis sp. ATCC 39116. Appl Microbiol Biotechnol 98:6387–6395. doi: 10.1007/s00253-014-5724-5 |
Fleige C, Hansen G, Kroll J, Steinbüchel A (2013) Investigation of the Amycolatopsis sp. strain ATCC 39116 vanillin dehydrogenase and its impact on the biotechnical production of vanillin. Appl Environ Microbiol 79:81–90. doi: 10.1128/AEM.02358-12 |
Ghosh S, Sachan A, Sen SK, Mitra A (2007) Microbial transformation of ferulic acid to vanillic acid by Streptomyces sannanensis MTCC 6637. J Ind Microbiol Biotechnol 34:131–138. doi: 10.1007/s10295-006-0177-1 |
Hua D, Ma C, Song L, Lin S, Zhang Z, Deng Z, Xu P (2007) Enhanced vanillin production from ferulic acid using adsorbent resin. Appl Microbiol Biotechnol 74:783–790. doi: 10.1007/s00253-006-0735-5 |
Iwagami SG, Yang K, Davies J (2000) Characterization of the protocatechuic acid catabolic gene cluster from Streptomyces sp. strain 2065. Appl Environ Microbiol 66:1499–1508. doi: 10.1128/AEM.66.4.1499-1508.2000 |
Kaur B, Chakraborty D (2013) Biotechnological and molecular approaches for vanillin production: a review. Appl Biochem Biotechnol 169:1353–1372. doi: 10.1007/s12010-012-0066-1 |
Ma X, Daugulis AJ (2014a) Effect of bioconversion conditions on vanillin production by Amycolatopsis sp. ATCC 39116 through an analysis of competing by-product formation. Bioprocess Biosyst Eng 37:891–899. doi: 10.1007/s00449-013-1060-x |
Ma XK, Daugulis AJ (2014b) Transformation of ferulic acid to vanillin using a fed-batch solid–liquid two-phase partitioning bioreactor. Biotechnol Prog 30:207–214. doi: 10.1002/btpr.1830 |
Martínez-Cuesta MDC, Payne J, Hanniffy SB, Gasson MJ, Narbad A (2005) Functional analysis of the vanillin pathway in a vdh-negative mutant strain of Pseudomonas fluorescens AN103. Enzym Microb Technol 37:131–138. doi: 10.1016/j.enzmictec.2005.02.004 |
Mathew S, Abraham TE, Sudheesh S (2007) Rapid conversion of ferulic acid to 4-vinyl guaiacol and vanillin metabolites by Debaryomyces hansenii. J Mol Catal B Enzym 44:48–52. doi: 10.1016/j.molcatb.2006.09.001 |
Max B, Carballo J, Cortés S, Domínguez JM (2012a) Decarboxylation of ferulic acid to 4-vinyl guaiacol by Streptomyces setonii. Appl Biochem Biotechnol 166:289–299. doi: 10.1007/s12010-011-9424-7 |
Max B, Tugores F, Cortés-Diéguez S, Domínguez JM (2012b) Bioprocess design for the microbial production of natural phenolic compounds by Debaryomyces hansenii. Appl Biochem Biotechnol 168:2268–2284. doi: 10.1007/s12010-012-9935-x |
Muheim A, Lerch K (1999) Towards a high-yield bioconversion of ferulic acid to vanillin. Appl Microbiol Biotechnol 51:456–461. doi: 10.1007/s002530051416 |
Muheim A, Müller B, Münch T, Wetli M (1988) Process for the production of vanillin. Patent EP 0885968 A1, 12 June 1998 |
Ou S, Kwok K-C (2004) Ferulic acid: pharmaceutical functions, preparation and applications in foods. J Sci Food Agric 84:1261–1269. doi: 10.1002/jsfa.1873 |
Plaggenborg R, Overhage J, Loos A, Archer JAC, Lessard P, Sinskey AJ, Steinbüchel A, Priefert H (2006) Potential of Rhodococcus strains for biotechnological vanillin production from ferulic acid and eugenol. Appl Microbiol Biotechnol 72:745–755. doi: 10.1007/s00253-005-0302-5 |
Priefert MH (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56:296–314. doi: 10.1007/s002530100687 |
Priefert H, Rabenhorst J, Steinbüchel A (2001) Biotechnological production of vanillin. Appl Microbiol Biotechnol 56:296–314. doi: 10.1007/s002530100687 |
Priefert H, Achterholt S, Steinbüchel A (2002) Transformation of the Pseudonocardiaceae Amycolatopsis sp. strain HR167 is highly dependent on the physiological state of the cells. Appl Microbiol Biotechnol 58:454–460. doi: 10.1007/s00253-001-0920-5 |
Rabenhorst J, Hopp R (1997) Process for the preparation of vanillin and suitable microorganisms. Patent US6133003 A, 17th October 2000 |
Rao SR, Ravishankar GA (2000) Review Vanilla flavour: production by conventional and biotechnological routes. J Sci Food Agric 304:289–304. doi: 10.1002/1097-0010(200002)80:3<289::AID-JSFA543>3.0.CO;2-2 |
Sarangi PK, Sahoo HP (2009) Standardization of cultural conditions for maximum vanillin production through ferulic acid degradation. Rep Opin 1:49–51. doi: 10.1007/s13205-014-0262-5 |
Sova M (2012) Antioxidant and antimicrobial activities of cinnamic acid derivatives. Mini-Rev Med Chem 12:749–767. doi: 10.2174/138955712801264792 |
Sutherland JB, Crawford DL, Pometto AL III (1983) Metabolism of cinnamic, p-coumaric, and ferulic acids by Streptomyces setonii. Can J Microbiol 29:1253–1257. doi: 10.1139/m83-195 |
Tilay A, Bule M, Annapure U (2010) Production of biovanillin by one-step biotransformation using fungus Pycnoporous cinnabarinus. J Agric Food Chem 58:4401–4405. doi: 10.1021/jf904141u |
Tripathi U, Rao SR, Ravishankar GA (2002) Biotransformation of phenylpropanoid compounds to vanilla flavor metabolites in cultures of Haematococcus pluvialis. Process Biochem 38:419–426. doi: 10.1016/S0032-9592(02)00135-8 |
Walton NJ, Mayer MJ, Narbad A (2003) Vanillin. Phytochemistry 63:505–515. doi: 10.1016/S0031-9422(03)00149-3 |
Zamzuri NA, Abd-Aziz S (2013) Biovanillin from agro wastes as an alternative food flavour. J Sci Food Agric 93:429–438. doi: 10.1002/jsfa.5962 |