On the existence of maximizing measures for irreducible countable Markov shifts: a dynamical proof (2014)
- Authors:
- USP affiliated authors: PROENÇA, RODRIGO BISSACOT - IME ; FREIRE JUNIOR, RICARDO DOS SANTOS - IME
- Unidade: IME
- DOI: 10.1017/etds.2012.194
- Subjects: TEORIA ERGÓDICA; SISTEMAS DINÂMICOS
- Language: Inglês
- Imprenta:
- Source:
- Título: Ergodic Theory and Dynamical Systems
- ISSN: 0143-3857
- Volume/Número/Paginação/Ano: v. 34, n. 4, p. 1103-1115, 2014
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BISSACOT, Rodrigo e FREIRE JÚNIOR, Ricardo dos Santos. On the existence of maximizing measures for irreducible countable Markov shifts: a dynamical proof. Ergodic Theory and Dynamical Systems, v. 34, n. 4, p. 1103-1115, 2014Tradução . . Disponível em: https://doi.org/10.1017/etds.2012.194. Acesso em: 19 fev. 2026. -
APA
Bissacot, R., & Freire Júnior, R. dos S. (2014). On the existence of maximizing measures for irreducible countable Markov shifts: a dynamical proof. Ergodic Theory and Dynamical Systems, 34( 4), 1103-1115. doi:10.1017/etds.2012.194 -
NLM
Bissacot R, Freire Júnior R dos S. On the existence of maximizing measures for irreducible countable Markov shifts: a dynamical proof [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 4): 1103-1115.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1017/etds.2012.194 -
Vancouver
Bissacot R, Freire Júnior R dos S. On the existence of maximizing measures for irreducible countable Markov shifts: a dynamical proof [Internet]. Ergodic Theory and Dynamical Systems. 2014 ; 34( 4): 1103-1115.[citado 2026 fev. 19 ] Available from: https://doi.org/10.1017/etds.2012.194 - Search for homogeneous polynomial invariants and a cubic-homogeneous mapping without quadratic invariants
- Instabilidade de pontos de equilíbrio de alguns sistemas lagrangeanos
- Equilibrium states and zero temperature limit on topologically transitive countable Markov shifts
- Phase transitions in ferromagnetic Ising models with spatially dependent magnetic fields
- Ground states, phase transitions, chaos and large deviations at zero temperature on finite and countable Markov shifts
- A democracia uspiana avança
- Quasi-invariant measures for generalized approximately proper equivalence relations
- Zero-temperature chaos in bidimensional models with finite-range potentials
- Spectral radius of weighted endomorphisms on generalized countable Markov shifts
- Zero-temperature phase diagram for double-well type potentials in the summable variation class
Informações sobre o DOI: 10.1017/etds.2012.194 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
