A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
MARCOMINI, Karem Daiane. Ensemble of convolutional neural networks for COVID-19 localization on chest X-ray images. Big Data and Cognitive Computing, v. 8, n. 8, p. 1-19, 2024Tradução . . Disponível em: https://doi.org/10.3390/bdcc8080084. Acesso em: 11 nov. 2024.
APA
Marcomini, K. D. (2024). Ensemble of convolutional neural networks for COVID-19 localization on chest X-ray images. Big Data and Cognitive Computing, 8( 8), 1-19. doi:10.3390/bdcc8080084
NLM
Marcomini KD. Ensemble of convolutional neural networks for COVID-19 localization on chest X-ray images [Internet]. Big Data and Cognitive Computing. 2024 ; 8( 8): 1-19.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/bdcc8080084
Vancouver
Marcomini KD. Ensemble of convolutional neural networks for COVID-19 localization on chest X-ray images [Internet]. Big Data and Cognitive Computing. 2024 ; 8( 8): 1-19.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/bdcc8080084
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
LIMA, Bruna Coelho de et al. The use of Vis-NIR-SWIR spectroscopy and X-ray fluorescence in the development of predictive models: a step forward in the quantification of nitrogen, total organic carbon and humic fractions in ferralsols. Remote Sensing, v. 16, p. 1-19, 2024Tradução . . Disponível em: https://doi.org/10.3390/rs16163009. Acesso em: 11 nov. 2024.
APA
Lima, B. C. de, Demattê, J. A. M., Santos, C. H. dos, Tiritan, C. S., Poppiel, R. R., Nanni, M. R., et al. (2024). The use of Vis-NIR-SWIR spectroscopy and X-ray fluorescence in the development of predictive models: a step forward in the quantification of nitrogen, total organic carbon and humic fractions in ferralsols. Remote Sensing, 16, 1-19. doi:10.3390/rs16163009
NLM
Lima BC de, Demattê JAM, Santos CH dos, Tiritan CS, Poppiel RR, Nanni MR, Falcioni R, Oliveira CA de, Vedana NG, Zimmermann G, Reis AS. The use of Vis-NIR-SWIR spectroscopy and X-ray fluorescence in the development of predictive models: a step forward in the quantification of nitrogen, total organic carbon and humic fractions in ferralsols [Internet]. Remote Sensing. 2024 ; 16 1-19.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/rs16163009
Vancouver
Lima BC de, Demattê JAM, Santos CH dos, Tiritan CS, Poppiel RR, Nanni MR, Falcioni R, Oliveira CA de, Vedana NG, Zimmermann G, Reis AS. The use of Vis-NIR-SWIR spectroscopy and X-ray fluorescence in the development of predictive models: a step forward in the quantification of nitrogen, total organic carbon and humic fractions in ferralsols [Internet]. Remote Sensing. 2024 ; 16 1-19.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/rs16163009
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
PESSOA, Thaís Nascimento et al. X-ray microtomography for investigating pore space and its relation to water retention and conduction in highly weathered soils. Agriculture, v. 13, p. 1-14, 2023Tradução . . Disponível em: https://doi.org/10.3390/agriculture13010028. Acesso em: 11 nov. 2024.
APA
Pessoa, T. N., Ferreira, T. R., Pires, L. F., Cooper, M., Uteau, D., Peth, S., et al. (2023). X-ray microtomography for investigating pore space and its relation to water retention and conduction in highly weathered soils. Agriculture, 13, 1-14. doi:10.3390/agriculture13010028
NLM
Pessoa TN, Ferreira TR, Pires LF, Cooper M, Uteau D, Peth S, Vaz CMP, Libardi PL. X-ray microtomography for investigating pore space and its relation to water retention and conduction in highly weathered soils [Internet]. Agriculture. 2023 ; 13 1-14.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/agriculture13010028
Vancouver
Pessoa TN, Ferreira TR, Pires LF, Cooper M, Uteau D, Peth S, Vaz CMP, Libardi PL. X-ray microtomography for investigating pore space and its relation to water retention and conduction in highly weathered soils [Internet]. Agriculture. 2023 ; 13 1-14.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/agriculture13010028
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ORTIZ, Mariangela Ivette Guanipa Ortiz et al. Calcium-Polyphosphate Submicroparticles (CaPP) Improvement Effect of the Experimental Bleaching Gels’ Chemical and Cellular-Viability Properties. Gels:MDPI AG, 2023, v. 9, n. 1, p. 42, 2023Tradução . . Disponível em: https://doi.org/10.3390/gels9010042. Acesso em: 11 nov. 2024.
APA
Ortiz, M. I. G. O., Santos, J. J. dos, Sánchez , J. B., Rodrigues Filho, U. P., Aguiar, F. H. B., Rischka, K., & Lima, D. A. N. L. (2023). Calcium-Polyphosphate Submicroparticles (CaPP) Improvement Effect of the Experimental Bleaching Gels’ Chemical and Cellular-Viability Properties. Gels:MDPI AG, 2023, 9( 1), 42. doi:10.3390/gels9010042
NLM
Ortiz MIGO, Santos JJ dos, Sánchez JB, Rodrigues Filho UP, Aguiar FHB, Rischka K, Lima DANL. Calcium-Polyphosphate Submicroparticles (CaPP) Improvement Effect of the Experimental Bleaching Gels’ Chemical and Cellular-Viability Properties [Internet]. Gels:MDPI AG, 2023. 2023 ;9( 1): 42.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/gels9010042
Vancouver
Ortiz MIGO, Santos JJ dos, Sánchez JB, Rodrigues Filho UP, Aguiar FHB, Rischka K, Lima DANL. Calcium-Polyphosphate Submicroparticles (CaPP) Improvement Effect of the Experimental Bleaching Gels’ Chemical and Cellular-Viability Properties [Internet]. Gels:MDPI AG, 2023. 2023 ;9( 1): 42.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/gels9010042
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
SAHAI, Raghvendra et al. Understanding high-energy (UV and X-ray) emission from AGB Stars—Episodic accretion in binary systems. Galaxies, v. 10, n. 3, p. art. 62 [ 01-10], 2022Tradução . . Disponível em: https://doi.org/10.3390/galaxies10030062. Acesso em: 11 nov. 2024.
APA
Sahai, R., Sanz Forcada, J., Guerrero, M. A., Ortiz, R. P., & Sanchez Contreras, C. (2022). Understanding high-energy (UV and X-ray) emission from AGB Stars—Episodic accretion in binary systems. Galaxies, 10( 3), art. 62 [ 01-10]. doi:10.3390/galaxies10030062
NLM
Sahai R, Sanz Forcada J, Guerrero MA, Ortiz RP, Sanchez Contreras C. Understanding high-energy (UV and X-ray) emission from AGB Stars—Episodic accretion in binary systems [Internet]. Galaxies. 2022 ; 10( 3): art. 62 [ 01-10].[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/galaxies10030062
Vancouver
Sahai R, Sanz Forcada J, Guerrero MA, Ortiz RP, Sanchez Contreras C. Understanding high-energy (UV and X-ray) emission from AGB Stars—Episodic accretion in binary systems [Internet]. Galaxies. 2022 ; 10( 3): art. 62 [ 01-10].[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/galaxies10030062
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
WEI, Marcelo Chan Fu et al. Dimensionality reduction statistical models for soil attribute prediction based on raw spectral data. AI, v. 3, p. 809-819, 2022Tradução . . Disponível em: https://doi.org/10.3390/ai3040049. Acesso em: 11 nov. 2024.
APA
Wei, M. C. F., Canal Filho, R., Tavares, T. R., Molin, J. P., & Vieira, A. M. C. (2022). Dimensionality reduction statistical models for soil attribute prediction based on raw spectral data. AI, 3, 809-819. doi:10.3390/ai3040049
NLM
Wei MCF, Canal Filho R, Tavares TR, Molin JP, Vieira AMC. Dimensionality reduction statistical models for soil attribute prediction based on raw spectral data [Internet]. AI. 2022 ; 3 809-819.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/ai3040049
Vancouver
Wei MCF, Canal Filho R, Tavares TR, Molin JP, Vieira AMC. Dimensionality reduction statistical models for soil attribute prediction based on raw spectral data [Internet]. AI. 2022 ; 3 809-819.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/ai3040049
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
DI RAIMO, Luis Augusto Di Loreto et al. Characterizing and Modeling Tropical Sandy Soils through VisNIR-SWIR, MIR Spectroscopy, and X-ray Fluorescence. Remote Sensing, v. 14, p. 1-24, 2022Tradução . . Disponível em: https://doi.org/10.3390/rs14194823. Acesso em: 11 nov. 2024.
APA
Di Raimo, L. A. D. L., Couto, E. G., Mello, D. C. de, Demattê, J. A. M., Amorim, R. S. S., Torres, G. N., et al. (2022). Characterizing and Modeling Tropical Sandy Soils through VisNIR-SWIR, MIR Spectroscopy, and X-ray Fluorescence. Remote Sensing, 14, 1-24. doi:10.3390/rs14194823
NLM
Di Raimo LADL, Couto EG, Mello DC de, Demattê JAM, Amorim RSS, Torres GN, Bocuti ED, Veloso GV, Poppiel RR, Francelino MR, Fernandes-Filho EI. Characterizing and Modeling Tropical Sandy Soils through VisNIR-SWIR, MIR Spectroscopy, and X-ray Fluorescence [Internet]. Remote Sensing. 2022 ; 14 1-24.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/rs14194823
Vancouver
Di Raimo LADL, Couto EG, Mello DC de, Demattê JAM, Amorim RSS, Torres GN, Bocuti ED, Veloso GV, Poppiel RR, Francelino MR, Fernandes-Filho EI. Characterizing and Modeling Tropical Sandy Soils through VisNIR-SWIR, MIR Spectroscopy, and X-ray Fluorescence [Internet]. Remote Sensing. 2022 ; 14 1-24.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/rs14194823
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
YAN, Jianglong et al. Classification of dispersed patterns of radiographic images with COVID-19 by core-periphery network modeling. Complex Networks & Their Applications X. Cham: Springer. Disponível em: https://doi.org/10.1007/978-3-030-93409-5_4. Acesso em: 11 nov. 2024. , 2021
APA
Yan, J., Liu, W., Zhu, Y. -tao, Li, G., Zheng, Q., & Liang, Z. (2021). Classification of dispersed patterns of radiographic images with COVID-19 by core-periphery network modeling. Complex Networks & Their Applications X. Cham: Springer. doi:10.1007/978-3-030-93409-5_4
NLM
Yan J, Liu W, Zhu Y-tao, Li G, Zheng Q, Liang Z. Classification of dispersed patterns of radiographic images with COVID-19 by core-periphery network modeling [Internet]. Complex Networks & Their Applications X. 2021 ; 1 40-49.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/978-3-030-93409-5_4
Vancouver
Yan J, Liu W, Zhu Y-tao, Li G, Zheng Q, Liang Z. Classification of dispersed patterns of radiographic images with COVID-19 by core-periphery network modeling [Internet]. Complex Networks & Their Applications X. 2021 ; 1 40-49.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/978-3-030-93409-5_4
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ALSIMAREE, Abdulrahman A et al. Pyrrolylquinoline-BF2 and BPh2 BODIPY-Type Analogues: Synthesis, Structural Analysis and Photophysical Properties. Crystals, v. 11, p. 1103, 2021Tradução . . Disponível em: https://doi.org/10.3390/cryst11091103. Acesso em: 11 nov. 2024.
APA
Alsimaree, A. A., Alatawi, O. M., Waddell, P. G., Day, D. P., Alsenani, N. I., & Knight, J. G. (2021). Pyrrolylquinoline-BF2 and BPh2 BODIPY-Type Analogues: Synthesis, Structural Analysis and Photophysical Properties. Crystals, 11, 1103. doi:10.3390/cryst11091103
NLM
Alsimaree AA, Alatawi OM, Waddell PG, Day DP, Alsenani NI, Knight JG. Pyrrolylquinoline-BF2 and BPh2 BODIPY-Type Analogues: Synthesis, Structural Analysis and Photophysical Properties [Internet]. Crystals. 2021 ; 11 1103.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/cryst11091103
Vancouver
Alsimaree AA, Alatawi OM, Waddell PG, Day DP, Alsenani NI, Knight JG. Pyrrolylquinoline-BF2 and BPh2 BODIPY-Type Analogues: Synthesis, Structural Analysis and Photophysical Properties [Internet]. Crystals. 2021 ; 11 1103.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/cryst11091103
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
GHOLIZADEH, Asa et al. vis–NIR and XRF Data Fusion and Feature Selection to Estimate Potentially Toxic Elements in Soil. Sensors, v. 21, n. 2386, p. 1-18, 2021Tradução . . Disponível em: https://doi.org/10.3390/s21072386. Acesso em: 11 nov. 2024.
APA
Gholizadeh, A., Coblinski, J. A., Saberioon, M., Ben-Dor, E., Drábek, O., Demattê, J. A. M., et al. (2021). vis–NIR and XRF Data Fusion and Feature Selection to Estimate Potentially Toxic Elements in Soil. Sensors, 21( 2386), 1-18. doi:10.3390/s21072386
NLM
Gholizadeh A, Coblinski JA, Saberioon M, Ben-Dor E, Drábek O, Demattê JAM, Borůvka L, Němeček K, Chabrillat S, Dajčl J. vis–NIR and XRF Data Fusion and Feature Selection to Estimate Potentially Toxic Elements in Soil [Internet]. Sensors. 2021 ; 21( 2386): 1-18.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/s21072386
Vancouver
Gholizadeh A, Coblinski JA, Saberioon M, Ben-Dor E, Drábek O, Demattê JAM, Borůvka L, Němeček K, Chabrillat S, Dajčl J. vis–NIR and XRF Data Fusion and Feature Selection to Estimate Potentially Toxic Elements in Soil [Internet]. Sensors. 2021 ; 21( 2386): 1-18.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/s21072386
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
GOMES-JUNIOR, Francisco Guilhien et al. Efficient detection of insects in seed lots: a current challenge to be overcome. ISTA Special Project 20-1: exploration of methods for detecting insects in seed lots. In Memoriam of Terry Aveling. Wallisellen, Switzerland: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo. Disponível em: https://issues.ink/ista/162-august-2021/?page=1. Acesso em: 11 nov. 2024. , 2021
APA
Gomes-Junior, F. G., Charrier, A., Reynaud, P., Boelt, B., Grimault, V., & van Duijn, B. (2021). Efficient detection of insects in seed lots: a current challenge to be overcome. ISTA Special Project 20-1: exploration of methods for detecting insects in seed lots. In Memoriam of Terry Aveling. Wallisellen, Switzerland: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo. Recuperado de https://issues.ink/ista/162-august-2021/?page=1
NLM
Gomes-Junior FG, Charrier A, Reynaud P, Boelt B, Grimault V, van Duijn B. Efficient detection of insects in seed lots: a current challenge to be overcome. ISTA Special Project 20-1: exploration of methods for detecting insects in seed lots [Internet]. In Memoriam of Terry Aveling. 2021 ;[citado 2024 nov. 11 ] Available from: https://issues.ink/ista/162-august-2021/?page=1
Vancouver
Gomes-Junior FG, Charrier A, Reynaud P, Boelt B, Grimault V, van Duijn B. Efficient detection of insects in seed lots: a current challenge to be overcome. ISTA Special Project 20-1: exploration of methods for detecting insects in seed lots [Internet]. In Memoriam of Terry Aveling. 2021 ;[citado 2024 nov. 11 ] Available from: https://issues.ink/ista/162-august-2021/?page=1
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
TAVARES, Tiago Rodrigues et al. Combined use of Vis-NIR and XRF sensors for tropical soil fertility analysis: assessing different data fusion approaches. Sensors, v. 21, p. 493-501, 2021Tradução . . Disponível em: https://doi.org/10.3390/s21010148. Acesso em: 11 nov. 2024.
APA
Tavares, T. R., Molin, J. P., Javadi, S. H., Carvalho, H. W. P. de, & Mouazen, A. M. (2021). Combined use of Vis-NIR and XRF sensors for tropical soil fertility analysis: assessing different data fusion approaches. Sensors, 21, 493-501. doi:10.3390/s21010148
NLM
Tavares TR, Molin JP, Javadi SH, Carvalho HWP de, Mouazen AM. Combined use of Vis-NIR and XRF sensors for tropical soil fertility analysis: assessing different data fusion approaches [Internet]. Sensors. 2021 ; 21 493-501.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/s21010148
Vancouver
Tavares TR, Molin JP, Javadi SH, Carvalho HWP de, Mouazen AM. Combined use of Vis-NIR and XRF sensors for tropical soil fertility analysis: assessing different data fusion approaches [Internet]. Sensors. 2021 ; 21 493-501.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/s21010148
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
LIU, Weiguang et al. Analysis of radiographic images of patients with COVID-19 using fractal dimension and complex network-based high-level classification. Studies in Computational Intelligence. Cham: Springer. Disponível em: https://doi.org/10.1007/978-3-030-93409-5_2. Acesso em: 11 nov. 2024. , 2021
APA
Liu, W., Yan, J., Zhu, Y. -tao, Pereira, E. J. de F., Li, G., Zheng, Q., & Liang, Z. (2021). Analysis of radiographic images of patients with COVID-19 using fractal dimension and complex network-based high-level classification. Studies in Computational Intelligence. Cham: Springer. doi:10.1007/978-3-030-93409-5_2
NLM
Liu W, Yan J, Zhu Y-tao, Pereira EJ de F, Li G, Zheng Q, Liang Z. Analysis of radiographic images of patients with COVID-19 using fractal dimension and complex network-based high-level classification [Internet]. Studies in Computational Intelligence. 2021 ; 1015 16-26.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/978-3-030-93409-5_2
Vancouver
Liu W, Yan J, Zhu Y-tao, Pereira EJ de F, Li G, Zheng Q, Liang Z. Analysis of radiographic images of patients with COVID-19 using fractal dimension and complex network-based high-level classification [Internet]. Studies in Computational Intelligence. 2021 ; 1015 16-26.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/978-3-030-93409-5_2
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
ULLH, Najeeb et al. Solution structures and dynamic assembly of the 24-meric plasmodial Pdx1–Pdx2 complex. International Journal of Molecular Sciences, v. 21, n. 17, p. 16 , 2020Tradução . . Disponível em: https://doi.org/10.3390/ijms21175971. Acesso em: 11 nov. 2024.
APA
Ullh, N., Andaleeb, H., Mudogo, C. N., Falke, S., Betzel, C., & Wrenger, C. (2020). Solution structures and dynamic assembly of the 24-meric plasmodial Pdx1–Pdx2 complex. International Journal of Molecular Sciences, 21( 17), 16 . doi:10.3390/ijms21175971
NLM
Ullh N, Andaleeb H, Mudogo CN, Falke S, Betzel C, Wrenger C. Solution structures and dynamic assembly of the 24-meric plasmodial Pdx1–Pdx2 complex [Internet]. International Journal of Molecular Sciences. 2020 ; 21( 17): 16 .[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/ijms21175971
Vancouver
Ullh N, Andaleeb H, Mudogo CN, Falke S, Betzel C, Wrenger C. Solution structures and dynamic assembly of the 24-meric plasmodial Pdx1–Pdx2 complex [Internet]. International Journal of Molecular Sciences. 2020 ; 21( 17): 16 .[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/ijms21175971
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
TAVARES, Tiago Rodrigues et al. Effect of X-Ray Tube Configuration on Measurement of Key Soil Fertility Attributes with XRF. Remote Sensing, v. 12, p. 1-21, 2020Tradução . . Disponível em: https://doi.org/10.3390/rs12060963. Acesso em: 11 nov. 2024.
APA
Tavares, T. R., Molin, J. P., Nunes, L. C., Alves, E. E. N., Melquiades, F. L., Carvalho, H. W. P. de, & Mouazen, A. M. (2020). Effect of X-Ray Tube Configuration on Measurement of Key Soil Fertility Attributes with XRF. Remote Sensing, 12, 1-21. doi:10.3390/rs12060963
NLM
Tavares TR, Molin JP, Nunes LC, Alves EEN, Melquiades FL, Carvalho HWP de, Mouazen AM. Effect of X-Ray Tube Configuration on Measurement of Key Soil Fertility Attributes with XRF [Internet]. Remote Sensing. 2020 ; 12 1-21.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/rs12060963
Vancouver
Tavares TR, Molin JP, Nunes LC, Alves EEN, Melquiades FL, Carvalho HWP de, Mouazen AM. Effect of X-Ray Tube Configuration on Measurement of Key Soil Fertility Attributes with XRF [Internet]. Remote Sensing. 2020 ; 12 1-21.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/rs12060963
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
MEDEIROS, André Dantas de et al. Machine Learning for Seed Quality Classification: An Advanced Approach Using Merger Data from FT-NIR Spectroscopy and X-ray Imaging. Sensors, v. 20, n. 15, p. 1-13, 2020Tradução . . Disponível em: https://doi.org/10.3390/s20154319. Acesso em: 11 nov. 2024.
APA
Medeiros, A. D. de, Silva, L. J. da, Ribeiro, J. P. O., Ferreira, K. C., Rosas, J. T. F., Santos, A. A., & Silva, C. B. da. (2020). Machine Learning for Seed Quality Classification: An Advanced Approach Using Merger Data from FT-NIR Spectroscopy and X-ray Imaging. Sensors, 20( 15), 1-13. doi:10.3390/s20154319
NLM
Medeiros AD de, Silva LJ da, Ribeiro JPO, Ferreira KC, Rosas JTF, Santos AA, Silva CB da. Machine Learning for Seed Quality Classification: An Advanced Approach Using Merger Data from FT-NIR Spectroscopy and X-ray Imaging [Internet]. Sensors. 2020 ; 20( 15): 1-13.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/s20154319
Vancouver
Medeiros AD de, Silva LJ da, Ribeiro JPO, Ferreira KC, Rosas JTF, Santos AA, Silva CB da. Machine Learning for Seed Quality Classification: An Advanced Approach Using Merger Data from FT-NIR Spectroscopy and X-ray Imaging [Internet]. Sensors. 2020 ; 20( 15): 1-13.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/s20154319
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
TAVARES, Tiago Rodrigues et al. Assessing soil key fertility attributes using a portable X-ray fluorescence: A simple method to overcome matrix effect. Agronomy, v. 10, n. 787, p. 1-21, 2020Tradução . . Disponível em: https://doi.org/10.3390/agronomy10060787. Acesso em: 11 nov. 2024.
APA
Tavares, T. R., Mouazen, A. M., Alves, E. E. N., Santos, F. R. dos, Melquiades, F. L., Carvalho, H. W. P. de, & Molin, J. P. (2020). Assessing soil key fertility attributes using a portable X-ray fluorescence: A simple method to overcome matrix effect. Agronomy, 10( 787), 1-21. doi:10.3390/agronomy10060787
NLM
Tavares TR, Mouazen AM, Alves EEN, Santos FR dos, Melquiades FL, Carvalho HWP de, Molin JP. Assessing soil key fertility attributes using a portable X-ray fluorescence: A simple method to overcome matrix effect [Internet]. Agronomy. 2020 ; 10( 787): 1-21.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/agronomy10060787
Vancouver
Tavares TR, Mouazen AM, Alves EEN, Santos FR dos, Melquiades FL, Carvalho HWP de, Molin JP. Assessing soil key fertility attributes using a portable X-ray fluorescence: A simple method to overcome matrix effect [Internet]. Agronomy. 2020 ; 10( 787): 1-21.[citado 2024 nov. 11 ] Available from: https://doi.org/10.3390/agronomy10060787
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
BACHIEGA, Patricia et al. Benchtop and handheld energy-dispersive X-Ray fluorescence (EDXRF) as alternative for selenium concentration measurement in biofortified broccoli seedling. Food Analytical Methods, p. 1-8, 2019Tradução . . Disponível em: https://doi.org/10.1007/s12161-019-01489-5. Acesso em: 11 nov. 2024.
APA
Bachiega, P., Almeida, E. de, Salgado, J. M., Arruda, M. A. Z., Lehmann, E. L., Morzelle, M. C., & Carvalho, H. W. P. de. (2019). Benchtop and handheld energy-dispersive X-Ray fluorescence (EDXRF) as alternative for selenium concentration measurement in biofortified broccoli seedling. Food Analytical Methods, 1-8. doi:10.1007/s12161-019-01489-5
NLM
Bachiega P, Almeida E de, Salgado JM, Arruda MAZ, Lehmann EL, Morzelle MC, Carvalho HWP de. Benchtop and handheld energy-dispersive X-Ray fluorescence (EDXRF) as alternative for selenium concentration measurement in biofortified broccoli seedling [Internet]. Food Analytical Methods. 2019 ; 1-8.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s12161-019-01489-5
Vancouver
Bachiega P, Almeida E de, Salgado JM, Arruda MAZ, Lehmann EL, Morzelle MC, Carvalho HWP de. Benchtop and handheld energy-dispersive X-Ray fluorescence (EDXRF) as alternative for selenium concentration measurement in biofortified broccoli seedling [Internet]. Food Analytical Methods. 2019 ; 1-8.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1007/s12161-019-01489-5
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
FRANÇA-SILVA, Fabiano et al. Radiographic analysis to test maize seeds for the presence of Sitophilus zeamais (Coleoptera: Curculionidae). Seed Science and Technology, v. 47, n. 3, p. 249-260, 2019Tradução . . Disponível em: https://doi.org/10.15258/sst.2019.47.3.02. Acesso em: 11 nov. 2024.
APA
França-Silva, F., Carvalho, M. L. M. de, Carvalho, G. A., Andrade, D. B. de, Souza, V. F. de, & Marques, E. R. (2019). Radiographic analysis to test maize seeds for the presence of Sitophilus zeamais (Coleoptera: Curculionidae). Seed Science and Technology, 47( 3), 249-260. doi:10.15258/sst.2019.47.3.02
NLM
França-Silva F, Carvalho MLM de, Carvalho GA, Andrade DB de, Souza VF de, Marques ER. Radiographic analysis to test maize seeds for the presence of Sitophilus zeamais (Coleoptera: Curculionidae) [Internet]. Seed Science and Technology. 2019 ; 47( 3): 249-260.[citado 2024 nov. 11 ] Available from: https://doi.org/10.15258/sst.2019.47.3.02
Vancouver
França-Silva F, Carvalho MLM de, Carvalho GA, Andrade DB de, Souza VF de, Marques ER. Radiographic analysis to test maize seeds for the presence of Sitophilus zeamais (Coleoptera: Curculionidae) [Internet]. Seed Science and Technology. 2019 ; 47( 3): 249-260.[citado 2024 nov. 11 ] Available from: https://doi.org/10.15258/sst.2019.47.3.02
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
ABNT
MUTZ, B et al. Dynamic transformation of small Ni particles during methanation of CO2 under fluctuating reaction conditions monitored by operando X-ray absorption spectroscopy. Journal of Physics: Conference Series, v. 712, p. 012050, 2016Tradução . . Disponível em: https://doi.org/10.1088/1742-6596/712/1/012050. Acesso em: 11 nov. 2024.
APA
Mutz, B., Carvalho, H. W. P. de, Kleist, W., & Grunwaldt, D. (2016). Dynamic transformation of small Ni particles during methanation of CO2 under fluctuating reaction conditions monitored by operando X-ray absorption spectroscopy. Journal of Physics: Conference Series, 712, 012050. doi:10.1088/1742-6596/712/1/012050
NLM
Mutz B, Carvalho HWP de, Kleist W, Grunwaldt D. Dynamic transformation of small Ni particles during methanation of CO2 under fluctuating reaction conditions monitored by operando X-ray absorption spectroscopy [Internet]. Journal of Physics: Conference Series. 2016 ; 712 012050.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1088/1742-6596/712/1/012050
Vancouver
Mutz B, Carvalho HWP de, Kleist W, Grunwaldt D. Dynamic transformation of small Ni particles during methanation of CO2 under fluctuating reaction conditions monitored by operando X-ray absorption spectroscopy [Internet]. Journal of Physics: Conference Series. 2016 ; 712 012050.[citado 2024 nov. 11 ] Available from: https://doi.org/10.1088/1742-6596/712/1/012050