Machine Learning for Seed Quality Classification: An Advanced Approach Using Merger Data from FT-NIR Spectroscopy and X-ray Imaging (2020)
- Authors:
- USP affiliated authors: SILVA, CLÍSSIA BARBOZA DA - ESALQ ; ROSAS, JORGE TADEU FIM - ESALQ
- Unidade: ESALQ
- DOI: 10.3390/s20154319
- Subjects: APRENDIZADO COMPUTACIONAL; BRACHIARIA; ESPECTROSCOPIA INFRAVERMELHA; RAIOS X; SEMENTES; TRANSFORMADA DE FOURIER
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MEDEIROS, André Dantas de et al. Machine Learning for Seed Quality Classification: An Advanced Approach Using Merger Data from FT-NIR Spectroscopy and X-ray Imaging. Sensors, v. 20, n. 15, p. 1-13, 2020Tradução . . Disponível em: https://doi.org/10.3390/s20154319. Acesso em: 23 jan. 2026. -
APA
Medeiros, A. D. de, Silva, L. J. da, Ribeiro, J. P. O., Ferreira, K. C., Rosas, J. T. F., Santos, A. A., & Silva, C. B. da. (2020). Machine Learning for Seed Quality Classification: An Advanced Approach Using Merger Data from FT-NIR Spectroscopy and X-ray Imaging. Sensors, 20( 15), 1-13. doi:10.3390/s20154319 -
NLM
Medeiros AD de, Silva LJ da, Ribeiro JPO, Ferreira KC, Rosas JTF, Santos AA, Silva CB da. Machine Learning for Seed Quality Classification: An Advanced Approach Using Merger Data from FT-NIR Spectroscopy and X-ray Imaging [Internet]. Sensors. 2020 ; 20( 15): 1-13.[citado 2026 jan. 23 ] Available from: https://doi.org/10.3390/s20154319 -
Vancouver
Medeiros AD de, Silva LJ da, Ribeiro JPO, Ferreira KC, Rosas JTF, Santos AA, Silva CB da. Machine Learning for Seed Quality Classification: An Advanced Approach Using Merger Data from FT-NIR Spectroscopy and X-ray Imaging [Internet]. Sensors. 2020 ; 20( 15): 1-13.[citado 2026 jan. 23 ] Available from: https://doi.org/10.3390/s20154319 - Interactive machine learning for soybean seed and seedling quality classification
- Condicionamento fisiológico de sementes de pimentão com biorreguladores
- Influence of tillage systems on soil physical properties, spectral response and yield of the bean crop
- A Novel Vegetation Index for Coffee Ripeness Monitoring Using Aerial Imagery
- Comparing a single-sensor camera with a multisensor camera for monitoring coffee crop using unmanned aerial vehicles
- Digital mapping of coffee ripeness using UAV-based multispectral imagery
- Low-cost system for radiometric calibration of UAV-based multispectral imagery
- Coffee ripeness monitoring using a UAV-mounted low-cost multispectral camera
- Quality assessment of coffee beans through computer vision and machine learning algorithms
- Fuzzy modeling of the risk of cacao moniliasis occurrence in Bahia state, Brazil
Informações sobre o DOI: 10.3390/s20154319 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3002377-Machine Learning ... | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
