Filtros : "Journal of Optimization Theory and Applications" "Financiamento CNPq" Removido: "Buchheim, Christoph" Limpar

Filtros



Refine with date range


  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: OTIMIZAÇÃO NÃO LINEAR, CONVERGÊNCIA, ALGORITMOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg et al. On the global convergence of a general class of augmented Lagrangian methods. Journal of Optimization Theory and Applications, v. 206, p. 1-25, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10957-025-02734-0. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., Haeser, G., Maculan, N., & Ramirez, L. M. (2025). On the global convergence of a general class of augmented Lagrangian methods. Journal of Optimization Theory and Applications, 206, 1-25. doi:10.1007/s10957-025-02734-0
    • NLM

      Birgin EJG, Haeser G, Maculan N, Ramirez LM. On the global convergence of a general class of augmented Lagrangian methods [Internet]. Journal of Optimization Theory and Applications. 2025 ; 206 1-25.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-025-02734-0
    • Vancouver

      Birgin EJG, Haeser G, Maculan N, Ramirez LM. On the global convergence of a general class of augmented Lagrangian methods [Internet]. Journal of Optimization Theory and Applications. 2025 ; 206 1-25.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-025-02734-0
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR, ANÁLISE NUMÉRICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Global convergence of a second-order augmented lagrangian method under an error bound condition. Journal of Optimization Theory and Applications, v. 206, n. artigo 54, p. 1-30, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10957-025-02731-3. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Prado, R. W., Schuverdt, M. L., & Secchin, L. D. (2025). Global convergence of a second-order augmented lagrangian method under an error bound condition. Journal of Optimization Theory and Applications, 206( artigo 54), 1-30. doi:10.1007/s10957-025-02731-3
    • NLM

      Andreani R, Haeser G, Prado RW, Schuverdt ML, Secchin LD. Global convergence of a second-order augmented lagrangian method under an error bound condition [Internet]. Journal of Optimization Theory and Applications. 2025 ; 206( artigo 54): 1-30.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-025-02731-3
    • Vancouver

      Andreani R, Haeser G, Prado RW, Schuverdt ML, Secchin LD. Global convergence of a second-order augmented lagrangian method under an error bound condition [Internet]. Journal of Optimization Theory and Applications. 2025 ; 206( artigo 54): 1-30.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-025-02731-3
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, OTIMIZAÇÃO RESTRITA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Optimality conditions for nonlinear second-order cone programming and symmetric cone programming. Journal of Optimization Theory and Applications, v. 200, p. 1-33, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10957-023-02338-6. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Fukuda, E. H., Haeser, G., Santos, D. O., & Secchin, L. D. (2024). Optimality conditions for nonlinear second-order cone programming and symmetric cone programming. Journal of Optimization Theory and Applications, 200, 1-33. doi:10.1007/s10957-023-02338-6
    • NLM

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. Optimality conditions for nonlinear second-order cone programming and symmetric cone programming [Internet]. Journal of Optimization Theory and Applications. 2024 ; 200 1-33.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-023-02338-6
    • Vancouver

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. Optimality conditions for nonlinear second-order cone programming and symmetric cone programming [Internet]. Journal of Optimization Theory and Applications. 2024 ; 200 1-33.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-023-02338-6
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming. Journal of Optimization Theory and Applications, v. 195, p. 42-78, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10957-022-02056-5. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Mito, L., Ramírez, C. H., & Silveira, T. P. da. (2022). Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming. Journal of Optimization Theory and Applications, 195, 42-78. doi:10.1007/s10957-022-02056-5
    • NLM

      Andreani R, Haeser G, Mito L, Ramírez CH, Silveira TP da. Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming [Internet]. Journal of Optimization Theory and Applications. 2022 ; 195 42-78.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-022-02056-5
    • Vancouver

      Andreani R, Haeser G, Mito L, Ramírez CH, Silveira TP da. Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming [Internet]. Journal of Optimization Theory and Applications. 2022 ; 195 42-78.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-022-02056-5
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg et al. Outer trust-region method for constrained optimization. Journal of Optimization Theory and Applications, v. 150, n. 1, p. 142-155, 2011Tradução . . Disponível em: https://doi.org/10.1007/s10957-011-9815-5. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., Castelani, E., Martinez, A. L. M., & Martínez, J. M. (2011). Outer trust-region method for constrained optimization. Journal of Optimization Theory and Applications, 150( 1), 142-155. doi:10.1007/s10957-011-9815-5
    • NLM

      Birgin EJG, Castelani E, Martinez ALM, Martínez JM. Outer trust-region method for constrained optimization [Internet]. Journal of Optimization Theory and Applications. 2011 ; 150( 1): 142-155.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-011-9815-5
    • Vancouver

      Birgin EJG, Castelani E, Martinez ALM, Martínez JM. Outer trust-region method for constrained optimization [Internet]. Journal of Optimization Theory and Applications. 2011 ; 150( 1): 142-155.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-011-9815-5
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Local convergence of an inexact-restoration method and numerical experiments. Journal of Optimization Theory and Applications, v. 127, n. 2, p. 229-247, 2005Tradução . . Disponível em: https://doi.org/10.1007/s10957-005-6537-6. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2005). Local convergence of an inexact-restoration method and numerical experiments. Journal of Optimization Theory and Applications, 127( 2), 229-247. doi:10.1007/s10957-005-6537-6
    • NLM

      Birgin EJG, Martínez JM. Local convergence of an inexact-restoration method and numerical experiments [Internet]. Journal of Optimization Theory and Applications. 2005 ; 127( 2): 229-247.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-005-6537-6
    • Vancouver

      Birgin EJG, Martínez JM. Local convergence of an inexact-restoration method and numerical experiments [Internet]. Journal of Optimization Theory and Applications. 2005 ; 127( 2): 229-247.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-005-6537-6

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025