Filtros : "Journal of Optimization Theory and Applications" Limpar

Filtros



Refine with date range


  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: OTIMIZAÇÃO NÃO LINEAR, CONVERGÊNCIA, ALGORITMOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg et al. On the global convergence of a general class of augmented Lagrangian methods. Journal of Optimization Theory and Applications, v. 206, p. 1-25, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10957-025-02734-0. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., Haeser, G., Maculan, N., & Ramirez, L. M. (2025). On the global convergence of a general class of augmented Lagrangian methods. Journal of Optimization Theory and Applications, 206, 1-25. doi:10.1007/s10957-025-02734-0
    • NLM

      Birgin EJG, Haeser G, Maculan N, Ramirez LM. On the global convergence of a general class of augmented Lagrangian methods [Internet]. Journal of Optimization Theory and Applications. 2025 ; 206 1-25.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-025-02734-0
    • Vancouver

      Birgin EJG, Haeser G, Maculan N, Ramirez LM. On the global convergence of a general class of augmented Lagrangian methods [Internet]. Journal of Optimization Theory and Applications. 2025 ; 206 1-25.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-025-02734-0
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR, ANÁLISE NUMÉRICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Global convergence of a second-order augmented lagrangian method under an error bound condition. Journal of Optimization Theory and Applications, v. 206, n. artigo 54, p. 1-30, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10957-025-02731-3. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Prado, R. W., Schuverdt, M. L., & Secchin, L. D. (2025). Global convergence of a second-order augmented lagrangian method under an error bound condition. Journal of Optimization Theory and Applications, 206( artigo 54), 1-30. doi:10.1007/s10957-025-02731-3
    • NLM

      Andreani R, Haeser G, Prado RW, Schuverdt ML, Secchin LD. Global convergence of a second-order augmented lagrangian method under an error bound condition [Internet]. Journal of Optimization Theory and Applications. 2025 ; 206( artigo 54): 1-30.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-025-02731-3
    • Vancouver

      Andreani R, Haeser G, Prado RW, Schuverdt ML, Secchin LD. Global convergence of a second-order augmented lagrangian method under an error bound condition [Internet]. Journal of Optimization Theory and Applications. 2025 ; 206( artigo 54): 1-30.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-025-02731-3
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, OTIMIZAÇÃO RESTRITA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Optimality conditions for nonlinear second-order cone programming and symmetric cone programming. Journal of Optimization Theory and Applications, v. 200, p. 1-33, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10957-023-02338-6. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Fukuda, E. H., Haeser, G., Santos, D. O., & Secchin, L. D. (2024). Optimality conditions for nonlinear second-order cone programming and symmetric cone programming. Journal of Optimization Theory and Applications, 200, 1-33. doi:10.1007/s10957-023-02338-6
    • NLM

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. Optimality conditions for nonlinear second-order cone programming and symmetric cone programming [Internet]. Journal of Optimization Theory and Applications. 2024 ; 200 1-33.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-023-02338-6
    • Vancouver

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. Optimality conditions for nonlinear second-order cone programming and symmetric cone programming [Internet]. Journal of Optimization Theory and Applications. 2024 ; 200 1-33.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-023-02338-6
  • Source: Journal of Optimization Theory and Applications. Unidade: FFCLRP

    Subjects: MATEMÁTICA, EQUAÇÕES DE NAVIER-STOKES, EQUAÇÕES DIFERENCIAIS ESTOCÁSTICAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHEMETOV, Nikolai Vasilievich e CIPRIANO, Fernanda. A boundary control problem for stochastic 2D-navier–stokes equations. Journal of Optimization Theory and Applications, v. 203, n. 2, p. 1847-1879, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10957-024-02416-3. Acesso em: 07 nov. 2025.
    • APA

      Chemetov, N. V., & Cipriano, F. (2024). A boundary control problem for stochastic 2D-navier–stokes equations. Journal of Optimization Theory and Applications, 203( 2), 1847-1879. doi:10.1007/s10957-024-02416-3
    • NLM

      Chemetov NV, Cipriano F. A boundary control problem for stochastic 2D-navier–stokes equations [Internet]. Journal of Optimization Theory and Applications. 2024 ; 203( 2): 1847-1879.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-024-02416-3
    • Vancouver

      Chemetov NV, Cipriano F. A boundary control problem for stochastic 2D-navier–stokes equations [Internet]. Journal of Optimization Theory and Applications. 2024 ; 203( 2): 1847-1879.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-024-02416-3
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming. Journal of Optimization Theory and Applications, v. 195, p. 42-78, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10957-022-02056-5. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Mito, L., Ramírez, C. H., & Silveira, T. P. da. (2022). Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming. Journal of Optimization Theory and Applications, 195, 42-78. doi:10.1007/s10957-022-02056-5
    • NLM

      Andreani R, Haeser G, Mito L, Ramírez CH, Silveira TP da. Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming [Internet]. Journal of Optimization Theory and Applications. 2022 ; 195 42-78.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-022-02056-5
    • Vancouver

      Andreani R, Haeser G, Mito L, Ramírez CH, Silveira TP da. Global convergence of algorithms under constant rank conditions for nonlinear second-order cone programming [Internet]. Journal of Optimization Theory and Applications. 2022 ; 195 42-78.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-022-02056-5
  • Source: Journal of Optimization Theory and Applications. Unidade: ICMC

    Assunto: OTIMIZAÇÃO GLOBAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUCHHEIM, Christoph e FAMPA, Marcia Helena Costa e SARMIENTO, Orlando. Lower bounds for cubic optimization over the sphere. Journal of Optimization Theory and Applications, v. 188, n. 3, p. 823-846, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10957-021-01809-y. Acesso em: 07 nov. 2025.
    • APA

      Buchheim, C., Fampa, M. H. C., & Sarmiento, O. (2021). Lower bounds for cubic optimization over the sphere. Journal of Optimization Theory and Applications, 188( 3), 823-846. doi:10.1007/s10957-021-01809-y
    • NLM

      Buchheim C, Fampa MHC, Sarmiento O. Lower bounds for cubic optimization over the sphere [Internet]. Journal of Optimization Theory and Applications. 2021 ; 188( 3): 823-846.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-021-01809-y
    • Vancouver

      Buchheim C, Fampa MHC, Sarmiento O. Lower bounds for cubic optimization over the sphere [Internet]. Journal of Optimization Theory and Applications. 2021 ; 188( 3): 823-846.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-021-01809-y
  • Source: Journal of Optimization Theory and Applications. Unidade: ICMC

    Subjects: EQUILÍBRIO, PROGRAMAÇÃO MATEMÁTICA, OTIMIZAÇÃO RESTRITA, PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HELOU, Elias Salomão e SANTOS, Sandra Augusta e SIMÕES, Lucas Eduardo Azevedo. Analysis of a new sequential optimality condition applied to mathematical programs with equilibrium constraints. Journal of Optimization Theory and Applications, v. 185, p. 433-447, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10957-020-01658-1. Acesso em: 07 nov. 2025.
    • APA

      Helou, E. S., Santos, S. A., & Simões, L. E. A. (2020). Analysis of a new sequential optimality condition applied to mathematical programs with equilibrium constraints. Journal of Optimization Theory and Applications, 185, 433-447. doi:10.1007/s10957-020-01658-1
    • NLM

      Helou ES, Santos SA, Simões LEA. Analysis of a new sequential optimality condition applied to mathematical programs with equilibrium constraints [Internet]. Journal of Optimization Theory and Applications. 2020 ; 185 433-447.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-020-01658-1
    • Vancouver

      Helou ES, Santos SA, Simões LEA. Analysis of a new sequential optimality condition applied to mathematical programs with equilibrium constraints [Internet]. Journal of Optimization Theory and Applications. 2020 ; 185 433-447.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-020-01658-1
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e RAMOS, Alberto. Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization. Journal of Optimization Theory and Applications, v. 187, n. 2, p. 469-487, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10957-020-01749-z. Acesso em: 07 nov. 2025.
    • APA

      Haeser, G., & Ramos, A. (2020). Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization. Journal of Optimization Theory and Applications, 187( 2), 469-487. doi:10.1007/s10957-020-01749-z
    • NLM

      Haeser G, Ramos A. Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 187( 2): 469-487.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-020-01749-z
    • Vancouver

      Haeser G, Ramos A. Constraint qualifications for Karush–Kuhn–Tucker conditions in multiobjective optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 187( 2): 469-487.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-020-01749-z
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e RAMOS, A. New constraint qualifications with second-order properties in nonlinear optimization. Journal of Optimization Theory and Applications, v. 184, p. 494-506, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10957-019-01603-x. Acesso em: 07 nov. 2025.
    • APA

      Haeser, G., & Ramos, A. (2020). New constraint qualifications with second-order properties in nonlinear optimization. Journal of Optimization Theory and Applications, 184, 494-506. doi:10.1007/s10957-019-01603-x
    • NLM

      Haeser G, Ramos A. New constraint qualifications with second-order properties in nonlinear optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 184 494-506.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-019-01603-x
    • Vancouver

      Haeser G, Ramos A. New constraint qualifications with second-order properties in nonlinear optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 184 494-506.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-019-01603-x
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MASCARENHAS, Walter Figueiredo. A simple canonical form for nonlinear programming problems and its use. Journal of Optimization Theory and Applications, v. 181, n. 2, p. 456–469, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10957-018-1381-7. Acesso em: 07 nov. 2025.
    • APA

      Mascarenhas, W. F. (2019). A simple canonical form for nonlinear programming problems and its use. Journal of Optimization Theory and Applications, 181( 2), 456–469. doi:10.1007/s10957-018-1381-7
    • NLM

      Mascarenhas WF. A simple canonical form for nonlinear programming problems and its use [Internet]. Journal of Optimization Theory and Applications. 2019 ; 181( 2): 456–469.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-018-1381-7
    • Vancouver

      Mascarenhas WF. A simple canonical form for nonlinear programming problems and its use [Internet]. Journal of Optimization Theory and Applications. 2019 ; 181( 2): 456–469.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-018-1381-7
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEHLING, Roger et al. On a conjecture in second-order optimality conditions. Journal of Optimization Theory and Applications, v. 176, n. 3, p. 625-633, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10957-018-1229-1. Acesso em: 07 nov. 2025.
    • APA

      Behling, R., Haeser, G., Ramos, A., & Viana, D. S. (2018). On a conjecture in second-order optimality conditions. Journal of Optimization Theory and Applications, 176( 3), 625-633. doi:10.1007/s10957-018-1229-1
    • NLM

      Behling R, Haeser G, Ramos A, Viana DS. On a conjecture in second-order optimality conditions [Internet]. Journal of Optimization Theory and Applications. 2018 ; 176( 3): 625-633.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-018-1229-1
    • Vancouver

      Behling R, Haeser G, Ramos A, Viana DS. On a conjecture in second-order optimality conditions [Internet]. Journal of Optimization Theory and Applications. 2018 ; 176( 3): 625-633.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-018-1229-1
  • Source: Journal of Optimization Theory and Applications. Unidade: ICMC

    Subjects: OTIMIZAÇÃO, OTIMIZAÇÃO COMBINATÓRIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HELOU, Elias Salomão e SANTOS, Sandra A e SIMÕES, Lucas E. A. On the local convergence analysis of the gradient sampling method for finite max-functions. Journal of Optimization Theory and Applications, v. 175, n. 1, p. 137-157, 2017Tradução . . Disponível em: https://doi.org/10.1007/s10957-017-1160-x. Acesso em: 07 nov. 2025.
    • APA

      Helou, E. S., Santos, S. A., & Simões, L. E. A. (2017). On the local convergence analysis of the gradient sampling method for finite max-functions. Journal of Optimization Theory and Applications, 175( 1), 137-157. doi:10.1007/s10957-017-1160-x
    • NLM

      Helou ES, Santos SA, Simões LEA. On the local convergence analysis of the gradient sampling method for finite max-functions [Internet]. Journal of Optimization Theory and Applications. 2017 ; 175( 1): 137-157.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-017-1160-x
    • Vancouver

      Helou ES, Santos SA, Simões LEA. On the local convergence analysis of the gradient sampling method for finite max-functions [Internet]. Journal of Optimization Theory and Applications. 2017 ; 175( 1): 137-157.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-017-1160-x
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel. An extension of Yuan's lemma and its applications in optimization. Journal of Optimization Theory and Applications, v. 174, n. 3, p. 641-649, 2017Tradução . . Disponível em: https://doi.org/10.1007/s10957-017-1123-2. Acesso em: 07 nov. 2025.
    • APA

      Haeser, G. (2017). An extension of Yuan's lemma and its applications in optimization. Journal of Optimization Theory and Applications, 174( 3), 641-649. doi:10.1007/s10957-017-1123-2
    • NLM

      Haeser G. An extension of Yuan's lemma and its applications in optimization [Internet]. Journal of Optimization Theory and Applications. 2017 ; 174( 3): 641-649.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-017-1123-2
    • Vancouver

      Haeser G. An extension of Yuan's lemma and its applications in optimization [Internet]. Journal of Optimization Theory and Applications. 2017 ; 174( 3): 641-649.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-017-1123-2
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, CÁLCULO DE VARIAÇÕES, PROGRAMAÇÃO MATEMÁTICA, ANÁLISE NUMÉRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, Luis Felipe e HAESER, Gabriel e MARTÍNEZ, José Mario. A flexible inexact-restoration method for constrained optimization. Journal of Optimization Theory and Applications, v. 165, n. 1, p. 188-208, 2015Tradução . . Disponível em: https://doi.org/10.1007/s10957-014-0572-0. Acesso em: 07 nov. 2025.
    • APA

      Bueno, L. F., Haeser, G., & Martínez, J. M. (2015). A flexible inexact-restoration method for constrained optimization. Journal of Optimization Theory and Applications, 165( 1), 188-208. doi:10.1007/s10957-014-0572-0
    • NLM

      Bueno LF, Haeser G, Martínez JM. A flexible inexact-restoration method for constrained optimization [Internet]. Journal of Optimization Theory and Applications. 2015 ; 165( 1): 188-208.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-014-0572-0
    • Vancouver

      Bueno LF, Haeser G, Martínez JM. A flexible inexact-restoration method for constrained optimization [Internet]. Journal of Optimization Theory and Applications. 2015 ; 165( 1): 188-208.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-014-0572-0
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: MÉTODOS DE PONTOS INTERIORES, PROGRAMAÇÃO QUADRÁTICA, PROGRAMAÇÃO CONVEXA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEHLING, Roger e GONZAGA, Clovis Caesar e HAESER, Gabriel. Primal-dual relationship between Levenberg–Marquardt and central trajectories for linearly constrained convex optimization. Journal of Optimization Theory and Applications, v. 162, n. 3, p. 705-717, 2014Tradução . . Disponível em: https://doi.org/10.1007/s10957-013-0492-4. Acesso em: 07 nov. 2025.
    • APA

      Behling, R., Gonzaga, C. C., & Haeser, G. (2014). Primal-dual relationship between Levenberg–Marquardt and central trajectories for linearly constrained convex optimization. Journal of Optimization Theory and Applications, 162( 3), 705-717. doi:10.1007/s10957-013-0492-4
    • NLM

      Behling R, Gonzaga CC, Haeser G. Primal-dual relationship between Levenberg–Marquardt and central trajectories for linearly constrained convex optimization [Internet]. Journal of Optimization Theory and Applications. 2014 ; 162( 3): 705-717.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-013-0492-4
    • Vancouver

      Behling R, Gonzaga CC, Haeser G. Primal-dual relationship between Levenberg–Marquardt and central trajectories for linearly constrained convex optimization [Internet]. Journal of Optimization Theory and Applications. 2014 ; 162( 3): 705-717.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-013-0492-4
  • Source: Journal of Optimization Theory and Applications. Unidade: FFCLRP

    Subjects: MATEMÁTICA, SISTEMAS DE CONTROLE, SEMIGRUPOS DE OPERADORES LINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Eduardo e O'REGAN, Donal e BALACHANDRAN, Krishnan. Comments on some recent results on controllability of abstract differential problems. Journal of Optimization Theory and Applications, v. 159, n. 1, p. 292-295, 2013Tradução . . Disponível em: https://doi.org/10.1007/s10957-013-0297-5. Acesso em: 07 nov. 2025.
    • APA

      Hernandez, E., O'Regan, D., & Balachandran, K. (2013). Comments on some recent results on controllability of abstract differential problems. Journal of Optimization Theory and Applications, 159( 1), 292-295. doi:10.1007/s10957-013-0297-5
    • NLM

      Hernandez E, O'Regan D, Balachandran K. Comments on some recent results on controllability of abstract differential problems [Internet]. Journal of Optimization Theory and Applications. 2013 ; 159( 1): 292-295.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-013-0297-5
    • Vancouver

      Hernandez E, O'Regan D, Balachandran K. Comments on some recent results on controllability of abstract differential problems [Internet]. Journal of Optimization Theory and Applications. 2013 ; 159( 1): 292-295.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-013-0297-5
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg et al. Outer trust-region method for constrained optimization. Journal of Optimization Theory and Applications, v. 150, n. 1, p. 142-155, 2011Tradução . . Disponível em: https://doi.org/10.1007/s10957-011-9815-5. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., Castelani, E., Martinez, A. L. M., & Martínez, J. M. (2011). Outer trust-region method for constrained optimization. Journal of Optimization Theory and Applications, 150( 1), 142-155. doi:10.1007/s10957-011-9815-5
    • NLM

      Birgin EJG, Castelani E, Martinez ALM, Martínez JM. Outer trust-region method for constrained optimization [Internet]. Journal of Optimization Theory and Applications. 2011 ; 150( 1): 142-155.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-011-9815-5
    • Vancouver

      Birgin EJG, Castelani E, Martinez ALM, Martínez JM. Outer trust-region method for constrained optimization [Internet]. Journal of Optimization Theory and Applications. 2011 ; 150( 1): 142-155.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-011-9815-5
  • Source: Journal of Optimization Theory and Applications. Unidade: EP

    Subjects: SISTEMAS LINEARES, SISTEMAS DE CONTROLE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, Oswaldo Luiz do Valle. Multiperiod mean-variance optimization with intertemporal restrictions. Journal of Optimization Theory and Applications, v. 134, n. 2, p. 257-274, 2007Tradução . . Disponível em: https://doi.org/10.1007/s10957-007-9233-x. Acesso em: 07 nov. 2025.
    • APA

      Costa, O. L. do V. (2007). Multiperiod mean-variance optimization with intertemporal restrictions. Journal of Optimization Theory and Applications, 134( 2), 257-274. doi:10.1007/s10957-007-9233-x
    • NLM

      Costa OL do V. Multiperiod mean-variance optimization with intertemporal restrictions [Internet]. Journal of Optimization Theory and Applications. 2007 ;134( 2): 257-274.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-007-9233-x
    • Vancouver

      Costa OL do V. Multiperiod mean-variance optimization with intertemporal restrictions [Internet]. Journal of Optimization Theory and Applications. 2007 ;134( 2): 257-274.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-007-9233-x
  • Source: Journal of Optimization Theory and Applications. Unidade: EP

    Subjects: ELETROMIOGRAFIA, DIAGNÓSTICO POR COMPUTADOR

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ITIKI, Cinthia. Dynamic programming and diagnostic classification. Journal of Optimization Theory and Applications, v. 127, n. 3, p. 579-586, 2005Tradução . . Acesso em: 07 nov. 2025.
    • APA

      Itiki, C. (2005). Dynamic programming and diagnostic classification. Journal of Optimization Theory and Applications, 127( 3), 579-586.
    • NLM

      Itiki C. Dynamic programming and diagnostic classification. Journal of Optimization Theory and Applications. 2005 ;127( 3): 579-586.[citado 2025 nov. 07 ]
    • Vancouver

      Itiki C. Dynamic programming and diagnostic classification. Journal of Optimization Theory and Applications. 2005 ;127( 3): 579-586.[citado 2025 nov. 07 ]
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Local convergence of an inexact-restoration method and numerical experiments. Journal of Optimization Theory and Applications, v. 127, n. 2, p. 229-247, 2005Tradução . . Disponível em: https://doi.org/10.1007/s10957-005-6537-6. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2005). Local convergence of an inexact-restoration method and numerical experiments. Journal of Optimization Theory and Applications, 127( 2), 229-247. doi:10.1007/s10957-005-6537-6
    • NLM

      Birgin EJG, Martínez JM. Local convergence of an inexact-restoration method and numerical experiments [Internet]. Journal of Optimization Theory and Applications. 2005 ; 127( 2): 229-247.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-005-6537-6
    • Vancouver

      Birgin EJG, Martínez JM. Local convergence of an inexact-restoration method and numerical experiments [Internet]. Journal of Optimization Theory and Applications. 2005 ; 127( 2): 229-247.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-005-6537-6

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025