Filtros : "Journal of Optimization Theory and Applications" "IME-MAP" Removido: "PROGRAMAÇÃO MATEMÁTICA" Limpar

Filtros



Refine with date range


  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: OTIMIZAÇÃO NÃO LINEAR, CONVERGÊNCIA, ALGORITMOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg et al. On the global convergence of a general class of augmented Lagrangian methods. Journal of Optimization Theory and Applications, v. 206, p. 1-25, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10957-025-02734-0. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., Haeser, G., Maculan, N., & Ramirez, L. M. (2025). On the global convergence of a general class of augmented Lagrangian methods. Journal of Optimization Theory and Applications, 206, 1-25. doi:10.1007/s10957-025-02734-0
    • NLM

      Birgin EJG, Haeser G, Maculan N, Ramirez LM. On the global convergence of a general class of augmented Lagrangian methods [Internet]. Journal of Optimization Theory and Applications. 2025 ; 206 1-25.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-025-02734-0
    • Vancouver

      Birgin EJG, Haeser G, Maculan N, Ramirez LM. On the global convergence of a general class of augmented Lagrangian methods [Internet]. Journal of Optimization Theory and Applications. 2025 ; 206 1-25.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-025-02734-0
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, OTIMIZAÇÃO RESTRITA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. Optimality conditions for nonlinear second-order cone programming and symmetric cone programming. Journal of Optimization Theory and Applications, v. 200, p. 1-33, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10957-023-02338-6. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Fukuda, E. H., Haeser, G., Santos, D. O., & Secchin, L. D. (2024). Optimality conditions for nonlinear second-order cone programming and symmetric cone programming. Journal of Optimization Theory and Applications, 200, 1-33. doi:10.1007/s10957-023-02338-6
    • NLM

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. Optimality conditions for nonlinear second-order cone programming and symmetric cone programming [Internet]. Journal of Optimization Theory and Applications. 2024 ; 200 1-33.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-023-02338-6
    • Vancouver

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. Optimality conditions for nonlinear second-order cone programming and symmetric cone programming [Internet]. Journal of Optimization Theory and Applications. 2024 ; 200 1-33.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-023-02338-6
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: MÉTODOS DE PONTOS INTERIORES, PROGRAMAÇÃO QUADRÁTICA, PROGRAMAÇÃO CONVEXA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEHLING, Roger e GONZAGA, Clovis Caesar e HAESER, Gabriel. Primal-dual relationship between Levenberg–Marquardt and central trajectories for linearly constrained convex optimization. Journal of Optimization Theory and Applications, v. 162, n. 3, p. 705-717, 2014Tradução . . Disponível em: https://doi.org/10.1007/s10957-013-0492-4. Acesso em: 07 nov. 2025.
    • APA

      Behling, R., Gonzaga, C. C., & Haeser, G. (2014). Primal-dual relationship between Levenberg–Marquardt and central trajectories for linearly constrained convex optimization. Journal of Optimization Theory and Applications, 162( 3), 705-717. doi:10.1007/s10957-013-0492-4
    • NLM

      Behling R, Gonzaga CC, Haeser G. Primal-dual relationship between Levenberg–Marquardt and central trajectories for linearly constrained convex optimization [Internet]. Journal of Optimization Theory and Applications. 2014 ; 162( 3): 705-717.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-013-0492-4
    • Vancouver

      Behling R, Gonzaga CC, Haeser G. Primal-dual relationship between Levenberg–Marquardt and central trajectories for linearly constrained convex optimization [Internet]. Journal of Optimization Theory and Applications. 2014 ; 162( 3): 705-717.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-013-0492-4

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025