Filtros : "PROGRAMAÇÃO MATEMÁTICA" "Alemanha" Removido: "1993" Limpar

Filtros



Limitar por data


  • Fonte: Mathematical Programming. Unidade: ICMC

    Assuntos: ALGORITMOS, OTIMIZAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HELOU, Elias Salomão e SANTOS, Sandra Augusta e SIMÕES, Lucas Eduardo Azevedo. A primal nonsmooth reformulation for bilevel optimization problems. Mathematical Programming, v. 198, p. 1381-1409, 2023Tradução . . Disponível em: https://doi.org/10.1007/s10107-021-01764-6. Acesso em: 07 nov. 2025.
    • APA

      Helou, E. S., Santos, S. A., & Simões, L. E. A. (2023). A primal nonsmooth reformulation for bilevel optimization problems. Mathematical Programming, 198, 1381-1409. doi:10.1007/s10107-021-01764-6
    • NLM

      Helou ES, Santos SA, Simões LEA. A primal nonsmooth reformulation for bilevel optimization problems [Internet]. Mathematical Programming. 2023 ; 198 1381-1409.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-021-01764-6
    • Vancouver

      Helou ES, Santos SA, Simões LEA. A primal nonsmooth reformulation for bilevel optimization problems [Internet]. Mathematical Programming. 2023 ; 198 1381-1409.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-021-01764-6
  • Fonte: Mathematical Programming Computation. Unidade: IME

    Assuntos: OTIMIZAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees. Mathematical Programming Computation, v. 14, n. 1, p. 121-146, 2022Tradução . . Disponível em: https://doi.org/10.1007/s12532-021-00207-9. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Schuverdt, M. L., Secchin, L. D., & Silva e Silva, P. J. (2022). On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees. Mathematical Programming Computation, 14( 1), 121-146. doi:10.1007/s12532-021-00207-9
    • NLM

      Andreani R, Haeser G, Schuverdt ML, Secchin LD, Silva e Silva PJ. On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees [Internet]. Mathematical Programming Computation. 2022 ; 14( 1): 121-146.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s12532-021-00207-9
    • Vancouver

      Andreani R, Haeser G, Schuverdt ML, Secchin LD, Silva e Silva PJ. On scaled stopping criteria for a safeguarded augmented Lagrangian method with theoretical guarantees [Internet]. Mathematical Programming Computation. 2022 ; 14( 1): 121-146.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s12532-021-00207-9
  • Fonte: TOP. Unidade: IME

    Assuntos: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg et al. On the solution of linearly constrained optimization problems by means of barrier algorithms. TOP, v. 29, n. 2, p. 417-441, 2021Tradução . . Disponível em: https://doi.org/10.1007/s11750-020-00559-w. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., Gardenghi, J. L. C., Martínez, J. M., & Santos, S. A. (2021). On the solution of linearly constrained optimization problems by means of barrier algorithms. TOP, 29( 2), 417-441. doi:10.1007/s11750-020-00559-w
    • NLM

      Birgin EJG, Gardenghi JLC, Martínez JM, Santos SA. On the solution of linearly constrained optimization problems by means of barrier algorithms [Internet]. TOP. 2021 ; 29( 2): 417-441.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s11750-020-00559-w
    • Vancouver

      Birgin EJG, Gardenghi JLC, Martínez JM, Santos SA. On the solution of linearly constrained optimization problems by means of barrier algorithms [Internet]. TOP. 2021 ; 29( 2): 417-441.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s11750-020-00559-w
  • Fonte: Mathematical Programming. Unidade: IME

    Assuntos: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO CONVEXA, PROGRAMAÇÃO NÃO LINEAR

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e HINDER, Oliver e YE, Yinyu. On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods. Mathematical Programming, v. 186, n. 1-2, p. 257-288, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10107-019-01454-4. Acesso em: 07 nov. 2025.
    • APA

      Haeser, G., Hinder, O., & Ye, Y. (2021). On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods. Mathematical Programming, 186( 1-2), 257-288. doi:10.1007/s10107-019-01454-4
    • NLM

      Haeser G, Hinder O, Ye Y. On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods [Internet]. Mathematical Programming. 2021 ; 186( 1-2): 257-288.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-019-01454-4
    • Vancouver

      Haeser G, Hinder O, Ye Y. On the behavior of Lagrange multipliers in convex and nonconvex infeasible interior point methods [Internet]. Mathematical Programming. 2021 ; 186( 1-2): 257-288.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-019-01454-4
  • Fonte: Mathematical Programming. Unidade: IME

    Assuntos: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto e HAESER, Gabriel e VIANA, Daiana S. Optimality conditions and global convergence for nonlinear semidefinite programming. Mathematical Programming, v. 180, n. 1-2, p. 203-235, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10107-018-1354-5. Acesso em: 07 nov. 2025.
    • APA

      Andreani, R., Haeser, G., & Viana, D. S. (2020). Optimality conditions and global convergence for nonlinear semidefinite programming. Mathematical Programming, 180( 1-2), 203-235. doi:10.1007/s10107-018-1354-5
    • NLM

      Andreani R, Haeser G, Viana DS. Optimality conditions and global convergence for nonlinear semidefinite programming [Internet]. Mathematical Programming. 2020 ; 180( 1-2): 203-235.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-018-1354-5
    • Vancouver

      Andreani R, Haeser G, Viana DS. Optimality conditions and global convergence for nonlinear semidefinite programming [Internet]. Mathematical Programming. 2020 ; 180( 1-2): 203-235.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-018-1354-5
  • Fonte: Conference book. Nome do evento: International Conference on Continuous Optimization - ICCOPT. Unidade: IME

    Assuntos: OTIMIZAÇÃO MATEMÁTICA, PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. A Newton-like method with mixed factorizations and cubic regularization and its usage in an Augmented Lagrangian framework. 2019, Anais.. Berlin: Weierstrass Institute for Applied Analysis and Stochastics (WIAS), 2019. Disponível em: https://www.iccopt2019.berlin/downloads/ICCOPT2019_Conference_Book.pdf. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2019). A Newton-like method with mixed factorizations and cubic regularization and its usage in an Augmented Lagrangian framework. In Conference book. Berlin: Weierstrass Institute for Applied Analysis and Stochastics (WIAS). Recuperado de https://www.iccopt2019.berlin/downloads/ICCOPT2019_Conference_Book.pdf
    • NLM

      Birgin EJG, Martínez JM. A Newton-like method with mixed factorizations and cubic regularization and its usage in an Augmented Lagrangian framework [Internet]. Conference book. 2019 ;[citado 2025 nov. 07 ] Available from: https://www.iccopt2019.berlin/downloads/ICCOPT2019_Conference_Book.pdf
    • Vancouver

      Birgin EJG, Martínez JM. A Newton-like method with mixed factorizations and cubic regularization and its usage in an Augmented Lagrangian framework [Internet]. Conference book. 2019 ;[citado 2025 nov. 07 ] Available from: https://www.iccopt2019.berlin/downloads/ICCOPT2019_Conference_Book.pdf
  • Fonte: Mathematical Programming. Unidade: IME

    Assuntos: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e LIU, Hongcheng e YE, Yinyu. Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary. Mathematical Programming, v. 178, n. 1-2, p. 263-299, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10107-018-1290-4. Acesso em: 07 nov. 2025.
    • APA

      Haeser, G., Liu, H., & Ye, Y. (2019). Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary. Mathematical Programming, 178( 1-2), 263-299. doi:10.1007/s10107-018-1290-4
    • NLM

      Haeser G, Liu H, Ye Y. Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary [Internet]. Mathematical Programming. 2019 ; 178( 1-2): 263-299.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-018-1290-4
    • Vancouver

      Haeser G, Liu H, Ye Y. Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary [Internet]. Mathematical Programming. 2019 ; 178( 1-2): 263-299.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-018-1290-4
  • Fonte: Mathematical Programming. Unidade: IME

    Assuntos: PROGRAMAÇÃO MATEMÁTICA, OTIMIZAÇÃO COMBINATÓRIA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Marcel Kenji de Carli e TUNÇEL, Levent. An axiomatic duality framework for the theta body and related convex corners. Mathematical Programming, v. 162, n. 1–2, p. 283-323, 2017Tradução . . Disponível em: https://doi.org/10.1007/s10107-016-1041-3. Acesso em: 07 nov. 2025.
    • APA

      Silva, M. K. de C., & Tunçel, L. (2017). An axiomatic duality framework for the theta body and related convex corners. Mathematical Programming, 162( 1–2), 283-323. doi:10.1007/s10107-016-1041-3
    • NLM

      Silva MK de C, Tunçel L. An axiomatic duality framework for the theta body and related convex corners [Internet]. Mathematical Programming. 2017 ; 162( 1–2): 283-323.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-016-1041-3
    • Vancouver

      Silva MK de C, Tunçel L. An axiomatic duality framework for the theta body and related convex corners [Internet]. Mathematical Programming. 2017 ; 162( 1–2): 283-323.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-016-1041-3
  • Fonte: Mathematical Programming Computation. Unidade: IME

    Assuntos: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO QUADRÁTICA, MÉTODOS NUMÉRICOS DE OTIMIZAÇÃO

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COMINETTI, Roberto e MASCARENHAS, Walter Figueiredo e SILVA, Paulo J. Silva e. A Newton’s method for the continuous quadratic knapsack problem. Mathematical Programming Computation, v. 6, n. 2, p. 151-169, 2014Tradução . . Disponível em: https://doi.org/10.1007/s12532-014-0066-y. Acesso em: 07 nov. 2025.
    • APA

      Cominetti, R., Mascarenhas, W. F., & Silva, P. J. S. e. (2014). A Newton’s method for the continuous quadratic knapsack problem. Mathematical Programming Computation, 6( 2), 151-169. doi:10.1007/s12532-014-0066-y
    • NLM

      Cominetti R, Mascarenhas WF, Silva PJS e. A Newton’s method for the continuous quadratic knapsack problem [Internet]. Mathematical Programming Computation. 2014 ; 6( 2): 151-169.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s12532-014-0066-y
    • Vancouver

      Cominetti R, Mascarenhas WF, Silva PJS e. A Newton’s method for the continuous quadratic knapsack problem [Internet]. Mathematical Programming Computation. 2014 ; 6( 2): 151-169.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s12532-014-0066-y
  • Fonte: Mathematical Programming. Unidade: IME

    Assuntos: MÉTODOS NUMÉRICOS DE OTIMIZAÇÃO, PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MASCARENHAS, Walter Figueiredo. The divergence of the BFGS and Gauss Newton methods. Mathematical Programming, v. 147, n. 1-2, p. 253-276, 2014Tradução . . Disponível em: https://doi.org/10.1007/s10107-013-0720-6. Acesso em: 07 nov. 2025.
    • APA

      Mascarenhas, W. F. (2014). The divergence of the BFGS and Gauss Newton methods. Mathematical Programming, 147( 1-2), 253-276. doi:10.1007/s10107-013-0720-6
    • NLM

      Mascarenhas WF. The divergence of the BFGS and Gauss Newton methods [Internet]. Mathematical Programming. 2014 ; 147( 1-2): 253-276.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-013-0720-6
    • Vancouver

      Mascarenhas WF. The divergence of the BFGS and Gauss Newton methods [Internet]. Mathematical Programming. 2014 ; 147( 1-2): 253-276.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10107-013-0720-6
  • Fonte: Journal of the Brazilian Computer Society. Unidade: IME

    Assuntos: BIOLOGIA, GENÉTICA, PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO DINÂMICA

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ADI, Said Sadique e FERREIRA, Carlos Eduardo. Syntenic global alignment and its application to the gene prediction problem. Journal of the Brazilian Computer Society, v. 19, n. 4, p. 511-521, 2013Tradução . . Disponível em: https://doi.org/10.1007/s13173-013-0115-9. Acesso em: 07 nov. 2025.
    • APA

      Adi, S. S., & Ferreira, C. E. (2013). Syntenic global alignment and its application to the gene prediction problem. Journal of the Brazilian Computer Society, 19( 4), 511-521. doi:10.1007/s13173-013-0115-9
    • NLM

      Adi SS, Ferreira CE. Syntenic global alignment and its application to the gene prediction problem [Internet]. Journal of the Brazilian Computer Society. 2013 ; 19( 4): 511-521.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s13173-013-0115-9
    • Vancouver

      Adi SS, Ferreira CE. Syntenic global alignment and its application to the gene prediction problem [Internet]. Journal of the Brazilian Computer Society. 2013 ; 19( 4): 511-521.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s13173-013-0115-9
  • Fonte: Mathematical Programming. Unidade: IME

    Assuntos: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, COMBINATÓRIA, TEORIA DOS GRAFOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Carlos Eduardo et al. The node capacitated graph partitioning problem: a computational study. Mathematical Programming, v. 81, n. 2, p. 229-256, 1998Tradução . . Disponível em: https://doi.org/10.1007/bf01581107. Acesso em: 07 nov. 2025.
    • APA

      Ferreira, C. E., Martin, A., de Souza, C. C., Weismantel, R., & Wolsey, L. A. (1998). The node capacitated graph partitioning problem: a computational study. Mathematical Programming, 81( 2), 229-256. doi:10.1007/bf01581107
    • NLM

      Ferreira CE, Martin A, de Souza CC, Weismantel R, Wolsey LA. The node capacitated graph partitioning problem: a computational study [Internet]. Mathematical Programming. 1998 ; 81( 2): 229-256.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/bf01581107
    • Vancouver

      Ferreira CE, Martin A, de Souza CC, Weismantel R, Wolsey LA. The node capacitated graph partitioning problem: a computational study [Internet]. Mathematical Programming. 1998 ; 81( 2): 229-256.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/bf01581107
  • Fonte: Mathematical Programming. Unidade: IME

    Assuntos: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, COMBINATÓRIA, TEORIA DOS GRAFOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA, Carlos Eduardo et al. Formulations and valid inequalities for the node capacitated graph partitioning problem. Mathematical Programming, v. 74, n. 3, p. 247-266, 1996Tradução . . Disponível em: https://doi.org/10.1007/bf02592198. Acesso em: 07 nov. 2025.
    • APA

      Ferreira, C. E., Martin, A., Souza, C. C. de, Weismantel, R., & Wolsey, L. A. (1996). Formulations and valid inequalities for the node capacitated graph partitioning problem. Mathematical Programming, 74( 3), 247-266. doi:10.1007/bf02592198
    • NLM

      Ferreira CE, Martin A, Souza CC de, Weismantel R, Wolsey LA. Formulations and valid inequalities for the node capacitated graph partitioning problem [Internet]. Mathematical Programming. 1996 ; 74( 3): 247-266.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/bf02592198
    • Vancouver

      Ferreira CE, Martin A, Souza CC de, Weismantel R, Wolsey LA. Formulations and valid inequalities for the node capacitated graph partitioning problem [Internet]. Mathematical Programming. 1996 ; 74( 3): 247-266.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/bf02592198

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025