Filtros : "Calculus of Variations and Partial Differential Equations" Removido: "Indexado no MathSciNet" Limpar

Filtros



Refine with date range


  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DAMIAN, Heydy Melchora Santos e SICILIANO, Gaetano. Critical Schrödinger–Bopp–Podolsky systems: solutions in the semiclassical limit. Calculus of Variations and Partial Differential Equations, v. 63, n. artigo 55, p. 1-23, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00526-024-02775-9. Acesso em: 11 dez. 2025.
    • APA

      Damian, H. M. S., & Siciliano, G. (2024). Critical Schrödinger–Bopp–Podolsky systems: solutions in the semiclassical limit. Calculus of Variations and Partial Differential Equations, 63( artigo 55), 1-23. doi:10.1007/s00526-024-02775-9
    • NLM

      Damian HMS, Siciliano G. Critical Schrödinger–Bopp–Podolsky systems: solutions in the semiclassical limit [Internet]. Calculus of Variations and Partial Differential Equations. 2024 ; 63( artigo 55): 1-23.[citado 2025 dez. 11 ] Available from: https://doi.org/10.1007/s00526-024-02775-9
    • Vancouver

      Damian HMS, Siciliano G. Critical Schrödinger–Bopp–Podolsky systems: solutions in the semiclassical limit [Internet]. Calculus of Variations and Partial Differential Equations. 2024 ; 63( artigo 55): 1-23.[citado 2025 dez. 11 ] Available from: https://doi.org/10.1007/s00526-024-02775-9
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, PROBLEMAS VARIACIONAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENCI, Vieri e NARDULLI, Stefano e PICCIONE, Paolo. Multiple solutions for the Van der Waals-Allen-Cahn-Hilliard equation with a volume constraint. Calculus of Variations and Partial Differential Equations, v. 59, n. 2, 2020Tradução . . Disponível em: https://doi.org/10.1007/s00526-020-1724-8. Acesso em: 11 dez. 2025.
    • APA

      Benci, V., Nardulli, S., & Piccione, P. (2020). Multiple solutions for the Van der Waals-Allen-Cahn-Hilliard equation with a volume constraint. Calculus of Variations and Partial Differential Equations, 59( 2). doi:10.1007/s00526-020-1724-8
    • NLM

      Benci V, Nardulli S, Piccione P. Multiple solutions for the Van der Waals-Allen-Cahn-Hilliard equation with a volume constraint [Internet]. Calculus of Variations and Partial Differential Equations. 2020 ; 59( 2):[citado 2025 dez. 11 ] Available from: https://doi.org/10.1007/s00526-020-1724-8
    • Vancouver

      Benci V, Nardulli S, Piccione P. Multiple solutions for the Van der Waals-Allen-Cahn-Hilliard equation with a volume constraint [Internet]. Calculus of Variations and Partial Differential Equations. 2020 ; 59( 2):[citado 2025 dez. 11 ] Available from: https://doi.org/10.1007/s00526-020-1724-8
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Subjects: SUPERFÍCIES MÍNIMAS, GEOMETRIA DIFERENCIAL, ESPAÇOS SIMÉTRICOS, SUBVARIEDADES

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GORODSKI, Claudio e MENDES, Ricardo A. E. e RADESCHI, Marco. Robust index bounds for minimal hypersurfaces of isoparametric submanifolds and symmetric spaces. Calculus of Variations and Partial Differential Equations, v. 58, n. 4, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00526-019-1552-x. Acesso em: 11 dez. 2025.
    • APA

      Gorodski, C., Mendes, R. A. E., & Radeschi, M. (2019). Robust index bounds for minimal hypersurfaces of isoparametric submanifolds and symmetric spaces. Calculus of Variations and Partial Differential Equations, 58( 4). doi:10.1007/s00526-019-1552-x
    • NLM

      Gorodski C, Mendes RAE, Radeschi M. Robust index bounds for minimal hypersurfaces of isoparametric submanifolds and symmetric spaces [Internet]. Calculus of Variations and Partial Differential Equations. 2019 ; 58( 4):[citado 2025 dez. 11 ] Available from: https://doi.org/10.1007/s00526-019-1552-x
    • Vancouver

      Gorodski C, Mendes RAE, Radeschi M. Robust index bounds for minimal hypersurfaces of isoparametric submanifolds and symmetric spaces [Internet]. Calculus of Variations and Partial Differential Equations. 2019 ; 58( 4):[citado 2025 dez. 11 ] Available from: https://doi.org/10.1007/s00526-019-1552-x
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Subjects: GEODÉSIA, GEOMETRIA DIFERENCIAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto e GIANNONI, Fábio e PICCIONE, Paolo. Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles. Calculus of Variations and Partial Differential Equations, v. 57, n. 5, p. 1-26, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00526-018-1394-y. Acesso em: 11 dez. 2025.
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2018). Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles. Calculus of Variations and Partial Differential Equations, 57( 5), 1-26. doi:10.1007/s00526-018-1394-y
    • NLM

      Giambó R, Giannoni F, Piccione P. Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles [Internet]. Calculus of Variations and Partial Differential Equations. 2018 ; 57( 5): 1-26.[citado 2025 dez. 11 ] Available from: https://doi.org/10.1007/s00526-018-1394-y
    • Vancouver

      Giambó R, Giannoni F, Piccione P. Multiple orthogonal geodesic chords in nonconvex Riemannian disks using obstacles [Internet]. Calculus of Variations and Partial Differential Equations. 2018 ; 57( 5): 1-26.[citado 2025 dez. 11 ] Available from: https://doi.org/10.1007/s00526-018-1394-y
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Subjects: CÁLCULO DE VARIAÇÕES, CONTROLE ÓTIMO, MÉTODOS VARIACIONAIS, OPERADORES, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAMBOLEY, Jimmy et al. Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions. Calculus of Variations and Partial Differential Equations, v. 55, n. 6, p. 1-37, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00526-016-1084-6. Acesso em: 11 dez. 2025.
    • APA

      Lamboley, J., Laurain, A., Nadin, G., & Privat, Y. (2016). Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions. Calculus of Variations and Partial Differential Equations, 55( 6), 1-37. doi:10.1007/s00526-016-1084-6
    • NLM

      Lamboley J, Laurain A, Nadin G, Privat Y. Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions [Internet]. Calculus of Variations and Partial Differential Equations. 2016 ; 55( 6): 1-37.[citado 2025 dez. 11 ] Available from: https://doi.org/10.1007/s00526-016-1084-6
    • Vancouver

      Lamboley J, Laurain A, Nadin G, Privat Y. Properties of optimizers of the principal eigenvalue with indefinite weight and Robin conditions [Internet]. Calculus of Variations and Partial Differential Equations. 2016 ; 55( 6): 1-37.[citado 2025 dez. 11 ] Available from: https://doi.org/10.1007/s00526-016-1084-6
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, SISTEMAS HAMILTONIANOS, VARIEDADES RIEMANNIANAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIAMBÓ, Roberto e GIANNONI, Fabio e PICCIONE, Paolo. Multiple brake orbits in m-dimensional disks. Calculus of Variations and Partial Differential Equations, v. No 2015, n. 3, p. 2553-2580, 2015Tradução . . Disponível em: https://doi.org/10.1007/s00526-015-0875-5. Acesso em: 11 dez. 2025.
    • APA

      Giambó, R., Giannoni, F., & Piccione, P. (2015). Multiple brake orbits in m-dimensional disks. Calculus of Variations and Partial Differential Equations, No 2015( 3), 2553-2580. doi:10.1007/s00526-015-0875-5
    • NLM

      Giambó R, Giannoni F, Piccione P. Multiple brake orbits in m-dimensional disks [Internet]. Calculus of Variations and Partial Differential Equations. 2015 ; No 2015( 3): 2553-2580.[citado 2025 dez. 11 ] Available from: https://doi.org/10.1007/s00526-015-0875-5
    • Vancouver

      Giambó R, Giannoni F, Piccione P. Multiple brake orbits in m-dimensional disks [Internet]. Calculus of Variations and Partial Differential Equations. 2015 ; No 2015( 3): 2553-2580.[citado 2025 dez. 11 ] Available from: https://doi.org/10.1007/s00526-015-0875-5
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FERREIRA JUNIOR, Vanderley e MOREIRA DOS SANTOS, Ederson. On the finite space blow up of the solutions of the Swift–Hohenberg equation. Calculus of Variations and Partial Differential Equations, v. 54, n. 1, p. Se 2015, 2015Tradução . . Disponível em: https://doi.org/10.1007/s00526-015-0821-6. Acesso em: 11 dez. 2025.
    • APA

      Ferreira Junior, V., & Moreira dos Santos, E. (2015). On the finite space blow up of the solutions of the Swift–Hohenberg equation. Calculus of Variations and Partial Differential Equations, 54( 1), Se 2015. doi:10.1007/s00526-015-0821-6
    • NLM

      Ferreira Junior V, Moreira dos Santos E. On the finite space blow up of the solutions of the Swift–Hohenberg equation [Internet]. Calculus of Variations and Partial Differential Equations. 2015 ; 54( 1): Se 2015.[citado 2025 dez. 11 ] Available from: https://doi.org/10.1007/s00526-015-0821-6
    • Vancouver

      Ferreira Junior V, Moreira dos Santos E. On the finite space blow up of the solutions of the Swift–Hohenberg equation [Internet]. Calculus of Variations and Partial Differential Equations. 2015 ; 54( 1): Se 2015.[citado 2025 dez. 11 ] Available from: https://doi.org/10.1007/s00526-015-0821-6
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Assunto: PROBLEMAS VARIACIONAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PICCIONE, Paolo e TAUSK, Daniel Victor. An index theory for paths that are solutions of a class of strongly indefinite variational problems. Calculus of Variations and Partial Differential Equations, v. 15, n. 4, p. 529-551, 2002Tradução . . Disponível em: https://doi.org/10.1007/s005260100136. Acesso em: 11 dez. 2025.
    • APA

      Piccione, P., & Tausk, D. V. (2002). An index theory for paths that are solutions of a class of strongly indefinite variational problems. Calculus of Variations and Partial Differential Equations, 15( 4), 529-551. doi:10.1007/s005260100136
    • NLM

      Piccione P, Tausk DV. An index theory for paths that are solutions of a class of strongly indefinite variational problems [Internet]. Calculus of Variations and Partial Differential Equations. 2002 ; 15( 4): 529-551.[citado 2025 dez. 11 ] Available from: https://doi.org/10.1007/s005260100136
    • Vancouver

      Piccione P, Tausk DV. An index theory for paths that are solutions of a class of strongly indefinite variational problems [Internet]. Calculus of Variations and Partial Differential Equations. 2002 ; 15( 4): 529-551.[citado 2025 dez. 11 ] Available from: https://doi.org/10.1007/s005260100136
  • Source: Calculus of Variations and Partial Differential Equations. Unidade: IME

    Assunto: GEOMETRIA DIFERENCIAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GIANNONI, Fabio e MASIELLO, Antonio e PICCIONE, Paolo. A timelike extension of Fermat's principle in general relativity and applications. Calculus of Variations and Partial Differential Equations, v. 6, n. 3, p. 263-283, 1998Tradução . . Disponível em: https://doi.org/10.1007/s005260050091. Acesso em: 11 dez. 2025.
    • APA

      Giannoni, F., Masiello, A., & Piccione, P. (1998). A timelike extension of Fermat's principle in general relativity and applications. Calculus of Variations and Partial Differential Equations, 6( 3), 263-283. doi:10.1007/s005260050091
    • NLM

      Giannoni F, Masiello A, Piccione P. A timelike extension of Fermat's principle in general relativity and applications [Internet]. Calculus of Variations and Partial Differential Equations. 1998 ; 6( 3): 263-283.[citado 2025 dez. 11 ] Available from: https://doi.org/10.1007/s005260050091
    • Vancouver

      Giannoni F, Masiello A, Piccione P. A timelike extension of Fermat's principle in general relativity and applications [Internet]. Calculus of Variations and Partial Differential Equations. 1998 ; 6( 3): 263-283.[citado 2025 dez. 11 ] Available from: https://doi.org/10.1007/s005260050091

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025