Filtros : "Neural Computing and Applications" "Neural Computing and Applications" Removido: "ICMC" Limpar

Filtros



Refine with date range


  • Source: Neural Computing and Applications. Conference titles: LatinX in AI at NeurIPS. Unidade: IME

    Assunto: MATEMÁTICA APLICADA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POLO, Felipe Maia e VICENTE, Renato. Effective sample size, dimensionality, and generalization in covariate shift adaptation. Neural Computing and Applications. Godalming: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/s00521-021-06615-1. Acesso em: 21 nov. 2025. , 2023
    • APA

      Polo, F. M., & Vicente, R. (2023). Effective sample size, dimensionality, and generalization in covariate shift adaptation. Neural Computing and Applications. Godalming: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1007/s00521-021-06615-1
    • NLM

      Polo FM, Vicente R. Effective sample size, dimensionality, and generalization in covariate shift adaptation [Internet]. Neural Computing and Applications. 2023 ; 35( 25): 18187-18199.[citado 2025 nov. 21 ] Available from: https://doi.org/10.1007/s00521-021-06615-1
    • Vancouver

      Polo FM, Vicente R. Effective sample size, dimensionality, and generalization in covariate shift adaptation [Internet]. Neural Computing and Applications. 2023 ; 35( 25): 18187-18199.[citado 2025 nov. 21 ] Available from: https://doi.org/10.1007/s00521-021-06615-1
  • Source: Neural Computing and Applications. Unidade: FEA

    Subjects: APRENDIZADO COMPUTACIONAL, LÓGICA FUZZY, MOEDA (ECONOMIA)

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MACIEL, Leandro dos Santos e BALLINI, Rosangela e GOMIDE, Fernando. Adaptive fuzzy modeling of interval-valued stream data and application in cryptocurrencies prediction. Neural Computing and Applications, v. 1, p. 1, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00521-021-06263-5. Acesso em: 21 nov. 2025.
    • APA

      Maciel, L. dos S., Ballini, R., & Gomide, F. (2021). Adaptive fuzzy modeling of interval-valued stream data and application in cryptocurrencies prediction. Neural Computing and Applications, 1, 1. doi:10.1007/s00521-021-06263-5
    • NLM

      Maciel L dos S, Ballini R, Gomide F. Adaptive fuzzy modeling of interval-valued stream data and application in cryptocurrencies prediction [Internet]. Neural Computing and Applications. 2021 ; 1 1.[citado 2025 nov. 21 ] Available from: https://doi.org/10.1007/s00521-021-06263-5
    • Vancouver

      Maciel L dos S, Ballini R, Gomide F. Adaptive fuzzy modeling of interval-valued stream data and application in cryptocurrencies prediction [Internet]. Neural Computing and Applications. 2021 ; 1 1.[citado 2025 nov. 21 ] Available from: https://doi.org/10.1007/s00521-021-06263-5
  • Source: Neural Computing and Applications. Unidade: EP

    Assunto: SISTEMAS EMBUTIDOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SOUSA, Miguel Angelo de Abreu de e DEL MORAL HERNANDEZ, Emilio e PIRES, Ricardo. OFDM symbol identification by an unsupervised learning system under dynamically changing channel effects. Neural Computing and Applications, v. 30, n. 12, p. 3759-3771, 2018Tradução . . Disponível em: https://doi.org/10.1007/s00521-017-2957-0. Acesso em: 21 nov. 2025.
    • APA

      Sousa, M. A. de A. de, Del Moral Hernandez, E., & Pires, R. (2018). OFDM symbol identification by an unsupervised learning system under dynamically changing channel effects. Neural Computing and Applications, 30( 12), 3759-3771. doi:10.1007/s00521-017-2957-0
    • NLM

      Sousa MA de A de, Del Moral Hernandez E, Pires R. OFDM symbol identification by an unsupervised learning system under dynamically changing channel effects [Internet]. Neural Computing and Applications. 2018 ; 30( 12): 3759-3771.[citado 2025 nov. 21 ] Available from: https://doi.org/10.1007/s00521-017-2957-0
    • Vancouver

      Sousa MA de A de, Del Moral Hernandez E, Pires R. OFDM symbol identification by an unsupervised learning system under dynamically changing channel effects [Internet]. Neural Computing and Applications. 2018 ; 30( 12): 3759-3771.[citado 2025 nov. 21 ] Available from: https://doi.org/10.1007/s00521-017-2957-0
  • Source: Neural Computing and Applications. Unidade: EACH

    Subjects: EPILEPSIA, ELETROENCEFALOGRAFIA, APRENDIZADO COMPUTACIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PEREIRA, Luís Augusto Martins et al. Automatic identification of epileptic EEG signals through binary magnetic optimization algorithms. Neural Computing and Applications, n. ju 2017, p. 1-13, 2017Tradução . . Disponível em: https://doi.org/10.1007/s00521-017-3124-3. Acesso em: 21 nov. 2025.
    • APA

      Pereira, L. A. M., Papa, J. P., Coelho, A. L. V., Lima, C. A. de M., Pereira, D. R., & Albuquerque, V. H. C. de. (2017). Automatic identification of epileptic EEG signals through binary magnetic optimization algorithms. Neural Computing and Applications, ( ju 2017), 1-13. doi:10.1007/s00521-017-3124-3
    • NLM

      Pereira LAM, Papa JP, Coelho ALV, Lima CA de M, Pereira DR, Albuquerque VHC de. Automatic identification of epileptic EEG signals through binary magnetic optimization algorithms [Internet]. Neural Computing and Applications. 2017 ;( ju 2017): 1-13.[citado 2025 nov. 21 ] Available from: https://doi.org/10.1007/s00521-017-3124-3
    • Vancouver

      Pereira LAM, Papa JP, Coelho ALV, Lima CA de M, Pereira DR, Albuquerque VHC de. Automatic identification of epileptic EEG signals through binary magnetic optimization algorithms [Internet]. Neural Computing and Applications. 2017 ;( ju 2017): 1-13.[citado 2025 nov. 21 ] Available from: https://doi.org/10.1007/s00521-017-3124-3
  • Source: Neural Computing and Applications. Unidade: EACH

    Subjects: RECONHECIMENTO DE PADRÕES, INTELIGÊNCIA ARTIFICIAL, ANÁLISE DO MOVIMENTO HUMANO, ELETROMIOGRAFIA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Clodoaldo Aparecido de Moraes et al. Classification of electromyography signals using relevance vector machines and fractal dimension. Neural Computing and Applications, v. 27, n. 3, p. 791-804, 2016Tradução . . Disponível em: https://doi.org/10.1007/s00521-015-1953-5. Acesso em: 21 nov. 2025.
    • APA

      Lima, C. A. de M., Coelho, A. L. V., Madeo, R. C. B., & Peres, S. M. (2016). Classification of electromyography signals using relevance vector machines and fractal dimension. Neural Computing and Applications, 27( 3), 791-804. doi:10.1007/s00521-015-1953-5
    • NLM

      Lima CA de M, Coelho ALV, Madeo RCB, Peres SM. Classification of electromyography signals using relevance vector machines and fractal dimension [Internet]. Neural Computing and Applications. 2016 ; 27( 3): 791-804.[citado 2025 nov. 21 ] Available from: https://doi.org/10.1007/s00521-015-1953-5
    • Vancouver

      Lima CA de M, Coelho ALV, Madeo RCB, Peres SM. Classification of electromyography signals using relevance vector machines and fractal dimension [Internet]. Neural Computing and Applications. 2016 ; 27( 3): 791-804.[citado 2025 nov. 21 ] Available from: https://doi.org/10.1007/s00521-015-1953-5

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025