Filtros : "PROGRAMAÇÃO MATEMÁTICA" "Financiado pela FAPESP" Removido: "Financiado pela CAPES" Limpar

Filtros



Refine with date range


  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA, MÉTODOS NUMÉRICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming. Computational Optimization and Applications, v. 79, p. 633-648, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10589-021-00281-8. Acesso em: 19 nov. 2025.
    • APA

      Andreani, R., Fukuda, E. H., Haeser, G., Santos, D. O., & Secchin, L. D. (2021). On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming. Computational Optimization and Applications, 79, 633-648. doi:10.1007/s10589-021-00281-8
    • NLM

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming [Internet]. Computational Optimization and Applications. 2021 ; 79 633-648.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10589-021-00281-8
    • Vancouver

      Andreani R, Fukuda EH, Haeser G, Santos DO, Secchin LD. On the use of Jordan Algebras for improving global convergence of an Augmented Lagrangian method in nonlinear semidefinite programming [Internet]. Computational Optimization and Applications. 2021 ; 79 633-648.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10589-021-00281-8
  • Source: TOP. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg et al. On the solution of linearly constrained optimization problems by means of barrier algorithms. TOP, v. 29, n. 2, p. 417-441, 2021Tradução . . Disponível em: https://doi.org/10.1007/s11750-020-00559-w. Acesso em: 19 nov. 2025.
    • APA

      Birgin, E. J. G., Gardenghi, J. L. C., Martínez, J. M., & Santos, S. A. (2021). On the solution of linearly constrained optimization problems by means of barrier algorithms. TOP, 29( 2), 417-441. doi:10.1007/s11750-020-00559-w
    • NLM

      Birgin EJG, Gardenghi JLC, Martínez JM, Santos SA. On the solution of linearly constrained optimization problems by means of barrier algorithms [Internet]. TOP. 2021 ; 29( 2): 417-441.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s11750-020-00559-w
    • Vancouver

      Birgin EJG, Gardenghi JLC, Martínez JM, Santos SA. On the solution of linearly constrained optimization problems by means of barrier algorithms [Internet]. TOP. 2021 ; 29( 2): 417-441.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s11750-020-00559-w
  • Source: Combinatorics, Probability & Computing. Unidade: IME

    Subjects: TEORIA DOS GRAFOS, COMBINATÓRIA PROBABILÍSTICA, PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAN, Jie e KOHAYAKAWA, Yoshiharu e PERSON, Yury. Near-perfect clique-factors in sparse pseudorandom graphs. Combinatorics, Probability & Computing, v. 30, n. 4, p. 570-590, 2021Tradução . . Disponível em: https://doi.org/10.1017/S0963548320000577. Acesso em: 19 nov. 2025.
    • APA

      Han, J., Kohayakawa, Y., & Person, Y. (2021). Near-perfect clique-factors in sparse pseudorandom graphs. Combinatorics, Probability & Computing, 30( 4), 570-590. doi:10.1017/S0963548320000577
    • NLM

      Han J, Kohayakawa Y, Person Y. Near-perfect clique-factors in sparse pseudorandom graphs [Internet]. Combinatorics, Probability & Computing. 2021 ; 30( 4): 570-590.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1017/S0963548320000577
    • Vancouver

      Han J, Kohayakawa Y, Person Y. Near-perfect clique-factors in sparse pseudorandom graphs [Internet]. Combinatorics, Probability & Computing. 2021 ; 30( 4): 570-590.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1017/S0963548320000577
  • Source: European Journal of Operational Research. Unidades: IME, EP

    Subjects: PROGRAMAÇÃO MATEMÁTICA, SCHEDULING

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LUNARDI, Willian Tessaro et al. Metaheuristics for the online printing shop scheduling problem. European Journal of Operational Research, v. 293, n. 2, p. 419-441, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.ejor.2020.12.021. Acesso em: 19 nov. 2025.
    • APA

      Lunardi, W. T., Birgin, E. J. G., Ronconi, D. P., & Voos, H. (2021). Metaheuristics for the online printing shop scheduling problem. European Journal of Operational Research, 293( 2), 419-441. doi:10.1016/j.ejor.2020.12.021
    • NLM

      Lunardi WT, Birgin EJG, Ronconi DP, Voos H. Metaheuristics for the online printing shop scheduling problem [Internet]. European Journal of Operational Research. 2021 ; 293( 2): 419-441.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1016/j.ejor.2020.12.021
    • Vancouver

      Lunardi WT, Birgin EJG, Ronconi DP, Voos H. Metaheuristics for the online printing shop scheduling problem [Internet]. European Journal of Operational Research. 2021 ; 293( 2): 419-441.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1016/j.ejor.2020.12.021
  • Source: Journal of Optimization Theory and Applications. Unidade: ICMC

    Subjects: EQUILÍBRIO, PROGRAMAÇÃO MATEMÁTICA, OTIMIZAÇÃO RESTRITA, PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HELOU, Elias Salomão e SANTOS, Sandra Augusta e SIMÕES, Lucas Eduardo Azevedo. Analysis of a new sequential optimality condition applied to mathematical programs with equilibrium constraints. Journal of Optimization Theory and Applications, v. 185, p. 433-447, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10957-020-01658-1. Acesso em: 19 nov. 2025.
    • APA

      Helou, E. S., Santos, S. A., & Simões, L. E. A. (2020). Analysis of a new sequential optimality condition applied to mathematical programs with equilibrium constraints. Journal of Optimization Theory and Applications, 185, 433-447. doi:10.1007/s10957-020-01658-1
    • NLM

      Helou ES, Santos SA, Simões LEA. Analysis of a new sequential optimality condition applied to mathematical programs with equilibrium constraints [Internet]. Journal of Optimization Theory and Applications. 2020 ; 185 433-447.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10957-020-01658-1
    • Vancouver

      Helou ES, Santos SA, Simões LEA. Analysis of a new sequential optimality condition applied to mathematical programs with equilibrium constraints [Internet]. Journal of Optimization Theory and Applications. 2020 ; 185 433-447.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10957-020-01658-1
  • Source: SIAM Journal on Optimization. Unidade: ICMC

    Subjects: ALGORITMOS ÚTEIS E ESPECÍFICOS, OTIMIZAÇÃO GLOBAL, PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HELOU, Elias Salomão e SANTOS, Sandra Augusta e SIMÕES, Lucas Eduardo Azevedo. A new sequential optimality condition for constrained nonsmooth optimization. SIAM Journal on Optimization, v. 30, n. 2, p. 1610-1637, 2020Tradução . . Disponível em: https://doi.org/10.1137/18M1228608. Acesso em: 19 nov. 2025.
    • APA

      Helou, E. S., Santos, S. A., & Simões, L. E. A. (2020). A new sequential optimality condition for constrained nonsmooth optimization. SIAM Journal on Optimization, 30( 2), 1610-1637. doi:10.1137/18M1228608
    • NLM

      Helou ES, Santos SA, Simões LEA. A new sequential optimality condition for constrained nonsmooth optimization [Internet]. SIAM Journal on Optimization. 2020 ; 30( 2): 1610-1637.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1137/18M1228608
    • Vancouver

      Helou ES, Santos SA, Simões LEA. A new sequential optimality condition for constrained nonsmooth optimization [Internet]. SIAM Journal on Optimization. 2020 ; 30( 2): 1610-1637.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1137/18M1228608
  • Source: Computational Optimization and Applications. Conference titles: Brazilian Workshop on Continuous Optimization. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, L. F et al. An Augmented Lagrangian method for quasi-equilibrium problems. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/s10589-020-00180-4. Acesso em: 19 nov. 2025. , 2020
    • APA

      Bueno, L. F., Haeser, G., Lara, F., & Rojas, F. N. (2020). An Augmented Lagrangian method for quasi-equilibrium problems. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1007/s10589-020-00180-4
    • NLM

      Bueno LF, Haeser G, Lara F, Rojas FN. An Augmented Lagrangian method for quasi-equilibrium problems [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 737-766.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10589-020-00180-4
    • Vancouver

      Bueno LF, Haeser G, Lara F, Rojas FN. An Augmented Lagrangian method for quasi-equilibrium problems [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 737-766.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10589-020-00180-4
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e RAMOS, A. New constraint qualifications with second-order properties in nonlinear optimization. Journal of Optimization Theory and Applications, v. 184, p. 494-506, 2020Tradução . . Disponível em: https://doi.org/10.1007/s10957-019-01603-x. Acesso em: 19 nov. 2025.
    • APA

      Haeser, G., & Ramos, A. (2020). New constraint qualifications with second-order properties in nonlinear optimization. Journal of Optimization Theory and Applications, 184, 494-506. doi:10.1007/s10957-019-01603-x
    • NLM

      Haeser G, Ramos A. New constraint qualifications with second-order properties in nonlinear optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 184 494-506.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10957-019-01603-x
    • Vancouver

      Haeser G, Ramos A. New constraint qualifications with second-order properties in nonlinear optimization [Internet]. Journal of Optimization Theory and Applications. 2020 ; 184 494-506.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10957-019-01603-x
  • Source: Optimization Methods and Software. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA, ANÁLISE DE ALGORITMOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Complexity and performance of an Augmented Lagrangian algorithm. Optimization Methods and Software, v. 35, n. 5, p. 885-920, 2020Tradução . . Disponível em: https://doi.org/10.1080/10556788.2020.1746962. Acesso em: 19 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2020). Complexity and performance of an Augmented Lagrangian algorithm. Optimization Methods and Software, 35( 5), 885-920. doi:10.1080/10556788.2020.1746962
    • NLM

      Birgin EJG, Martínez JM. Complexity and performance of an Augmented Lagrangian algorithm [Internet]. Optimization Methods and Software. 2020 ; 35( 5): 885-920.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1080/10556788.2020.1746962
    • Vancouver

      Birgin EJG, Martínez JM. Complexity and performance of an Augmented Lagrangian algorithm [Internet]. Optimization Methods and Software. 2020 ; 35( 5): 885-920.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1080/10556788.2020.1746962
  • Source: Mathematics of Computation. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, MÉTODOS NUMÉRICOS DE OTIMIZAÇÃO, PROGRAMAÇÃO NÃO LINEAR

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e KREJIĆ, Nataša e MARTÍNEZ, José Mário. Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact. Mathematics of Computation, v. 89, p. 253-278, 2020Tradução . . Disponível em: https://doi.org/10.1090/mcom/3445. Acesso em: 19 nov. 2025.
    • APA

      Birgin, E. J. G., Krejić, N., & Martínez, J. M. (2020). Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact. Mathematics of Computation, 89, 253-278. doi:10.1090/mcom/3445
    • NLM

      Birgin EJG, Krejić N, Martínez JM. Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact [Internet]. Mathematics of Computation. 2020 ; 89 253-278.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1090/mcom/3445
    • Vancouver

      Birgin EJG, Krejić N, Martínez JM. Iteration and evaluation complexity for the minimization of functions whose computation is intrinsically inexact [Internet]. Mathematics of Computation. 2020 ; 89 253-278.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1090/mcom/3445
  • Source: SIAM Journal on Optimization. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, TEOREMA DE EXISTÊNCIA, PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDREANI, Roberto et al. New sequential optimality conditions for mathematical programs with complementarity constraints and algorithmic consequences. SIAM Journal on Optimization, v. 29, n. 4, p. 3201-3230, 2019Tradução . . Disponível em: https://doi.org/10.1137/18M121040X. Acesso em: 19 nov. 2025.
    • APA

      Andreani, R., Haeser, G., Secchin, L. D., & Silva, P. J. S. (2019). New sequential optimality conditions for mathematical programs with complementarity constraints and algorithmic consequences. SIAM Journal on Optimization, 29( 4), 3201-3230. doi:10.1137/18M121040X
    • NLM

      Andreani R, Haeser G, Secchin LD, Silva PJS. New sequential optimality conditions for mathematical programs with complementarity constraints and algorithmic consequences [Internet]. SIAM Journal on Optimization. 2019 ; 29( 4): 3201-3230.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1137/18M121040X
    • Vancouver

      Andreani R, Haeser G, Secchin LD, Silva PJS. New sequential optimality conditions for mathematical programs with complementarity constraints and algorithmic consequences [Internet]. SIAM Journal on Optimization. 2019 ; 29( 4): 3201-3230.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1137/18M121040X
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: OTIMIZAÇÃO MATEMÁTICA, PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTINEZ, José Mario. A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization. Computational Optimization and Applications, v. 73, n. 3, p. 707-753, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10589-019-00089-7. Acesso em: 19 nov. 2025.
    • APA

      Birgin, E. J. G., & Martinez, J. M. (2019). A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization. Computational Optimization and Applications, 73( 3), 707-753. doi:10.1007/s10589-019-00089-7
    • NLM

      Birgin EJG, Martinez JM. A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization [Internet]. Computational Optimization and Applications. 2019 ; 73( 3): 707-753.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10589-019-00089-7
    • Vancouver

      Birgin EJG, Martinez JM. A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization [Internet]. Computational Optimization and Applications. 2019 ; 73( 3): 707-753.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10589-019-00089-7
  • Source: Mathematical Programming. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel e LIU, Hongcheng e YE, Yinyu. Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary. Mathematical Programming, v. 178, n. 1-2, p. 263-299, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10107-018-1290-4. Acesso em: 19 nov. 2025.
    • APA

      Haeser, G., Liu, H., & Ye, Y. (2019). Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary. Mathematical Programming, 178( 1-2), 263-299. doi:10.1007/s10107-018-1290-4
    • NLM

      Haeser G, Liu H, Ye Y. Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary [Internet]. Mathematical Programming. 2019 ; 178( 1-2): 263-299.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10107-018-1290-4
    • Vancouver

      Haeser G, Liu H, Ye Y. Optimality condition and complexity analysis for linearly-constrained optimization without differentiability on the boundary [Internet]. Mathematical Programming. 2019 ; 178( 1-2): 263-299.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10107-018-1290-4
  • Source: Experimental Mathematics. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, MATEMÁTICA DISCRETA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CALUZA MACHADO, Fabrício e OLIVEIRA FILHO, Fernando Mário de. Improving the semidefinite programming bound for the kissing number by exploiting polynomial symmetry. Experimental Mathematics, v. 27, n. 3, p. 362-369, 2018Tradução . . Disponível em: https://doi.org/10.1080/10586458.2017.1286273. Acesso em: 19 nov. 2025.
    • APA

      Caluza Machado, F., & Oliveira Filho, F. M. de. (2018). Improving the semidefinite programming bound for the kissing number by exploiting polynomial symmetry. Experimental Mathematics, 27( 3), 362-369. doi:10.1080/10586458.2017.1286273
    • NLM

      Caluza Machado F, Oliveira Filho FM de. Improving the semidefinite programming bound for the kissing number by exploiting polynomial symmetry [Internet]. Experimental Mathematics. 2018 ; 27( 3): 362-369.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1080/10586458.2017.1286273
    • Vancouver

      Caluza Machado F, Oliveira Filho FM de. Improving the semidefinite programming bound for the kissing number by exploiting polynomial symmetry [Internet]. Experimental Mathematics. 2018 ; 27( 3): 362-369.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1080/10586458.2017.1286273
  • Source: SIAM Journal on Optimization. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO MATEMÁTICA, COMPUTABILIDADE E COMPLEXIDADE, ANÁLISE DE ALGORITMOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTINEZ, J M. On regularization and active-set methods with complexity for constrained optimization. SIAM Journal on Optimization, v. 28, n. 2, p. 1367-1395, 2018Tradução . . Disponível em: https://doi.org/10.1137/17M1127107. Acesso em: 19 nov. 2025.
    • APA

      Birgin, E. J. G., & Martinez, J. M. (2018). On regularization and active-set methods with complexity for constrained optimization. SIAM Journal on Optimization, 28( 2), 1367-1395. doi:10.1137/17M1127107
    • NLM

      Birgin EJG, Martinez JM. On regularization and active-set methods with complexity for constrained optimization [Internet]. SIAM Journal on Optimization. 2018 ; 28( 2): 1367-1395.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1137/17M1127107
    • Vancouver

      Birgin EJG, Martinez JM. On regularization and active-set methods with complexity for constrained optimization [Internet]. SIAM Journal on Optimization. 2018 ; 28( 2): 1367-1395.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1137/17M1127107
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel. A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms. Computational Optimization and Applications, v. 70, n. 2, p. 615–639, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10589-018-0005-3. Acesso em: 19 nov. 2025.
    • APA

      Haeser, G. (2018). A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms. Computational Optimization and Applications, 70( 2), 615–639. doi:10.1007/s10589-018-0005-3
    • NLM

      Haeser G. A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms [Internet]. Computational Optimization and Applications. 2018 ; 70( 2): 615–639.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10589-018-0005-3
    • Vancouver

      Haeser G. A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms [Internet]. Computational Optimization and Applications. 2018 ; 70( 2): 615–639.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10589-018-0005-3
  • Source: Mathematics of Computation. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, MÉTODOS NUMÉRICOS DE OTIMIZAÇÃO, PROGRAMAÇÃO NÃO LINEAR, PROGRAMAÇÃO ESTOCÁSTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e KREJIC, N e MARTÍNEZ, J. M. On the employment of inexact restoration for the minimization of functions whose evaluation is subject to errors. Mathematics of Computation, v. 87, n. 311, p. 1307-1326, 2018Tradução . . Disponível em: https://doi.org/10.1090/mcom/3246. Acesso em: 19 nov. 2025.
    • APA

      Birgin, E. J. G., Krejic, N., & Martínez, J. M. (2018). On the employment of inexact restoration for the minimization of functions whose evaluation is subject to errors. Mathematics of Computation, 87( 311), 1307-1326. doi:10.1090/mcom/3246
    • NLM

      Birgin EJG, Krejic N, Martínez JM. On the employment of inexact restoration for the minimization of functions whose evaluation is subject to errors [Internet]. Mathematics of Computation. 2018 ; 87( 311): 1307-1326.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1090/mcom/3246
    • Vancouver

      Birgin EJG, Krejic N, Martínez JM. On the employment of inexact restoration for the minimization of functions whose evaluation is subject to errors [Internet]. Mathematics of Computation. 2018 ; 87( 311): 1307-1326.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1090/mcom/3246
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel. An extension of Yuan's lemma and its applications in optimization. Journal of Optimization Theory and Applications, v. 174, n. 3, p. 641-649, 2017Tradução . . Disponível em: https://doi.org/10.1007/s10957-017-1123-2. Acesso em: 19 nov. 2025.
    • APA

      Haeser, G. (2017). An extension of Yuan's lemma and its applications in optimization. Journal of Optimization Theory and Applications, 174( 3), 641-649. doi:10.1007/s10957-017-1123-2
    • NLM

      Haeser G. An extension of Yuan's lemma and its applications in optimization [Internet]. Journal of Optimization Theory and Applications. 2017 ; 174( 3): 641-649.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10957-017-1123-2
    • Vancouver

      Haeser G. An extension of Yuan's lemma and its applications in optimization [Internet]. Journal of Optimization Theory and Applications. 2017 ; 174( 3): 641-649.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1007/s10957-017-1123-2
  • Source: SIAM Journal on Optimization. Unidade: IME

    Subjects: PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA, CÁLCULO DE VARIAÇÕES, CONTROLE ÓTIMO, MÉTODOS NUMÉRICOS, PROGRAMAÇÃO NÃO LINEAR, ANÁLISE NUMÉRICA, CIÊNCIA DA COMPUTAÇÃO, TEORIA DA COMPUTAÇÃO, OTIMIZAÇÃO IRRESTRITA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTINEZ, Jose Mario. The use of quadratic regularization with a cubic descent condition for unconstrained optimization. SIAM Journal on Optimization, v. 27, n. 2, p. 1049-1074, 2017Tradução . . Disponível em: https://doi.org/10.1137/16m110280x. Acesso em: 19 nov. 2025.
    • APA

      Birgin, E. J. G., & Martinez, J. M. (2017). The use of quadratic regularization with a cubic descent condition for unconstrained optimization. SIAM Journal on Optimization, 27( 2), 1049-1074. doi:10.1137/16m110280x
    • NLM

      Birgin EJG, Martinez JM. The use of quadratic regularization with a cubic descent condition for unconstrained optimization [Internet]. SIAM Journal on Optimization. 2017 ; 27( 2): 1049-1074.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1137/16m110280x
    • Vancouver

      Birgin EJG, Martinez JM. The use of quadratic regularization with a cubic descent condition for unconstrained optimization [Internet]. SIAM Journal on Optimization. 2017 ; 27( 2): 1049-1074.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1137/16m110280x
  • Source: Discrete Applied Mathematics. Conference titles: International Conference on Algorithms and Discrete Applied Mathematics - CALDAM 2015). Unidade: IME

    Subjects: ALGORITMOS GRÁFICOS, PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAVELO, Santiago Valdés e FERREIRA, Carlos Eduardo. A PTAS for the metric case of the minimum sum-requirement communication spanning tree problem. Discrete Applied Mathematics. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/j.dam.2016.09.031. Acesso em: 19 nov. 2025. , 2017
    • APA

      Ravelo, S. V., & Ferreira, C. E. (2017). A PTAS for the metric case of the minimum sum-requirement communication spanning tree problem. Discrete Applied Mathematics. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1016/j.dam.2016.09.031
    • NLM

      Ravelo SV, Ferreira CE. A PTAS for the metric case of the minimum sum-requirement communication spanning tree problem [Internet]. Discrete Applied Mathematics. 2017 ; 228 158-175.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1016/j.dam.2016.09.031
    • Vancouver

      Ravelo SV, Ferreira CE. A PTAS for the metric case of the minimum sum-requirement communication spanning tree problem [Internet]. Discrete Applied Mathematics. 2017 ; 228 158-175.[citado 2025 nov. 19 ] Available from: https://doi.org/10.1016/j.dam.2016.09.031

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025