Filtros : "DINÂMICA TOPOLÓGICA" "Indexado no MathSciNet" Removido: "Topological Methods in Nonlinear Analysis" Limpar

Filtros



Refine with date range


  • Source: Mathematische Annalen. Unidade: ICMC

    Subjects: ATRATORES, DINÂMICA TOPOLÓGICA, PROBLEMAS DE CONTORNO, EQUAÇÕES DE NAVIER-STOKES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, TEORIA QUALITATIVA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUI, Hongyong et al. Multi-valued dynamical systems on time-dependent metric spaces with applications to Navier-Stokes equations. Mathematische Annalen, v. 390, n. 4, p. 5415-5470, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00208-024-02908-7. Acesso em: 27 nov. 2025.
    • APA

      Cui, H., Figueroa López, R. N., López-Lázaro, H., & Simsen, J. (2024). Multi-valued dynamical systems on time-dependent metric spaces with applications to Navier-Stokes equations. Mathematische Annalen, 390( 4), 5415-5470. doi:10.1007/s00208-024-02908-7
    • NLM

      Cui H, Figueroa López RN, López-Lázaro H, Simsen J. Multi-valued dynamical systems on time-dependent metric spaces with applications to Navier-Stokes equations [Internet]. Mathematische Annalen. 2024 ; 390( 4): 5415-5470.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00208-024-02908-7
    • Vancouver

      Cui H, Figueroa López RN, López-Lázaro H, Simsen J. Multi-valued dynamical systems on time-dependent metric spaces with applications to Navier-Stokes equations [Internet]. Mathematische Annalen. 2024 ; 390( 4): 5415-5470.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00208-024-02908-7
  • Source: Journal of Nonlinear Science. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, SISTEMAS DISSIPATIVO

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUI, Hongyong e CUNHA, Arthur Cavalcante e LANGA, José Antonio. Finite-dimensionality of tempered random uniform attractors. Journal of Nonlinear Science, v. 32, p. 1-55, 2022Tradução . . Disponível em: https://doi.org/10.1007/s00332-021-09764-8. Acesso em: 27 nov. 2025.
    • APA

      Cui, H., Cunha, A. C., & Langa, J. A. (2022). Finite-dimensionality of tempered random uniform attractors. Journal of Nonlinear Science, 32, 1-55. doi:10.1007/s00332-021-09764-8
    • NLM

      Cui H, Cunha AC, Langa JA. Finite-dimensionality of tempered random uniform attractors [Internet]. Journal of Nonlinear Science. 2022 ; 32 1-55.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00332-021-09764-8
    • Vancouver

      Cui H, Cunha AC, Langa JA. Finite-dimensionality of tempered random uniform attractors [Internet]. Journal of Nonlinear Science. 2022 ; 32 1-55.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00332-021-09764-8
  • Source: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, v. 34, n. 4, p. 2681-2747, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10884-021-10066-6. Acesso em: 27 nov. 2025.
    • APA

      Bortolan, M. C., Carvalho, A. N. de, Langa, J. A., & Raugel, G. (2022). Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram. Journal of Dynamics and Differential Equations, 34( 4), 2681-2747. doi:10.1007/s10884-021-10066-6
    • NLM

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10884-021-10066-6
    • Vancouver

      Bortolan MC, Carvalho AN de, Langa JA, Raugel G. Nonautonomous perturbations of Morse-Smale semigroups: stability of the phase diagram [Internet]. Journal of Dynamics and Differential Equations. 2022 ; 34( 4): 2681-2747.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10884-021-10066-6
  • Source: Asymptotic Analysis. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DE CONTROLE, TEORIA DE SISTEMAS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás et al. Permanence of nonuniform nonautonomous hyperbolicity for infinite-dimensional differential equations. Asymptotic Analysis, v. 129, n. 1, p. 1-27, 2022Tradução . . Disponível em: https://doi.org/10.3233/ASY-211719. Acesso em: 27 nov. 2025.
    • APA

      Caraballo, T., Carvalho, A. N. de, Langa, J. A., & Oliveira-Sousa, A. do N. (2022). Permanence of nonuniform nonautonomous hyperbolicity for infinite-dimensional differential equations. Asymptotic Analysis, 129( 1), 1-27. doi:10.3233/ASY-211719
    • NLM

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. Permanence of nonuniform nonautonomous hyperbolicity for infinite-dimensional differential equations [Internet]. Asymptotic Analysis. 2022 ; 129( 1): 1-27.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3233/ASY-211719
    • Vancouver

      Caraballo T, Carvalho AN de, Langa JA, Oliveira-Sousa A do N. Permanence of nonuniform nonautonomous hyperbolicity for infinite-dimensional differential equations [Internet]. Asymptotic Analysis. 2022 ; 129( 1): 1-27.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3233/ASY-211719
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: ANÁLISE REAL, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, DINÂMICA TOPOLÓGICA, ESPAÇOS DE BANACH

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Fernanda Andrade da et al. Converse Lyapunov theorems for measure functional differential equations. Journal of Differential Equations, v. 286, p. 1-46, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.02.060. Acesso em: 27 nov. 2025.
    • APA

      Silva, F. A. da, Federson, M., Grau, R., & Toon, E. (2021). Converse Lyapunov theorems for measure functional differential equations. Journal of Differential Equations, 286, 1-46. doi:10.1016/j.jde.2021.02.060
    • NLM

      Silva FA da, Federson M, Grau R, Toon E. Converse Lyapunov theorems for measure functional differential equations [Internet]. Journal of Differential Equations. 2021 ; 286 1-46.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.02.060
    • Vancouver

      Silva FA da, Federson M, Grau R, Toon E. Converse Lyapunov theorems for measure functional differential equations [Internet]. Journal of Differential Equations. 2021 ; 286 1-46.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.02.060
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, ANÁLISE REAL, EQUAÇÕES DIFERENCIAIS NÃO LINEARES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e FEDERSON, Marcia e GADOTTI, Marta Cilene. Recursive properties of generalized ordinary differential equations and applications. Journal of Differential Equations, v. 303, p. 123-155, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.09.013. Acesso em: 27 nov. 2025.
    • APA

      Bonotto, E. de M., Federson, M., & Gadotti, M. C. (2021). Recursive properties of generalized ordinary differential equations and applications. Journal of Differential Equations, 303, 123-155. doi:10.1016/j.jde.2021.09.013
    • NLM

      Bonotto E de M, Federson M, Gadotti MC. Recursive properties of generalized ordinary differential equations and applications [Internet]. Journal of Differential Equations. 2021 ; 303 123-155.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.09.013
    • Vancouver

      Bonotto E de M, Federson M, Gadotti MC. Recursive properties of generalized ordinary differential equations and applications [Internet]. Journal of Differential Equations. 2021 ; 303 123-155.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.09.013
  • Source: Geometriae Dedicata. Unidade: ICMC

    Subjects: TEORIA DO ÍNDICE, DINÂMICA TOPOLÓGICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Dahisy V. de S e MANZOLI NETO, Oziride e REZENDE, Ketty Abaroa de. On handle theory for Morse-Bott critical manifolds. Geometriae Dedicata, v. 202, n. 1, p. 265-309, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10711-018-0413-7. Acesso em: 27 nov. 2025.
    • APA

      Lima, D. V. de S., Manzoli Neto, O., & Rezende, K. A. de. (2019). On handle theory for Morse-Bott critical manifolds. Geometriae Dedicata, 202( 1), 265-309. doi:10.1007/s10711-018-0413-7
    • NLM

      Lima DV de S, Manzoli Neto O, Rezende KA de. On handle theory for Morse-Bott critical manifolds [Internet]. Geometriae Dedicata. 2019 ; 202( 1): 265-309.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10711-018-0413-7
    • Vancouver

      Lima DV de S, Manzoli Neto O, Rezende KA de. On handle theory for Morse-Bott critical manifolds [Internet]. Geometriae Dedicata. 2019 ; 202( 1): 265-309.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10711-018-0413-7
  • Source: Proceedings of the Royal Society of Edinburgh. Unidade: ICMC

    Subjects: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS, DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e PIMENTEL, Juliana Fernandes da Silva. Autonomous and non-autonomous unbounded attractors under perturbations. Proceedings of the Royal Society of Edinburgh, v. 149, n. 4, p. 877-903, 2019Tradução . . Disponível em: https://doi.org/10.1017/prm.2018.51. Acesso em: 27 nov. 2025.
    • APA

      Carvalho, A. N. de, & Pimentel, J. F. da S. (2019). Autonomous and non-autonomous unbounded attractors under perturbations. Proceedings of the Royal Society of Edinburgh, 149( 4), 877-903. doi:10.1017/prm.2018.51
    • NLM

      Carvalho AN de, Pimentel JF da S. Autonomous and non-autonomous unbounded attractors under perturbations [Internet]. Proceedings of the Royal Society of Edinburgh. 2019 ; 149( 4): 877-903.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1017/prm.2018.51
    • Vancouver

      Carvalho AN de, Pimentel JF da S. Autonomous and non-autonomous unbounded attractors under perturbations [Internet]. Proceedings of the Royal Society of Edinburgh. 2019 ; 149( 4): 877-903.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1017/prm.2018.51
  • Source: Communications on Pure and Applied Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, DINÂMICA TOPOLÓGICA, ANÁLISE FUNCIONAL, OPERADORES PSEUDODIFERENCIAIS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Rítis. An extension of the concept of exponential dichotomy in Fréchet spaces which is stable under perturbation. Communications on Pure and Applied Analysis, v. 18, n. 2, p. 845-868, 2019Tradução . . Disponível em: https://doi.org/10.3934/cpaa.2019041. Acesso em: 27 nov. 2025.
    • APA

      Aragão-Costa, É. R. (2019). An extension of the concept of exponential dichotomy in Fréchet spaces which is stable under perturbation. Communications on Pure and Applied Analysis, 18( 2), 845-868. doi:10.3934/cpaa.2019041
    • NLM

      Aragão-Costa ÉR. An extension of the concept of exponential dichotomy in Fréchet spaces which is stable under perturbation [Internet]. Communications on Pure and Applied Analysis. 2019 ; 18( 2): 845-868.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3934/cpaa.2019041
    • Vancouver

      Aragão-Costa ÉR. An extension of the concept of exponential dichotomy in Fréchet spaces which is stable under perturbation [Internet]. Communications on Pure and Applied Analysis. 2019 ; 18( 2): 845-868.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3934/cpaa.2019041
  • Source: Applied Mathematics and Optimization. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, DINÂMICA TOPOLÓGICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MA, To Fu e MONTEIRO, Rodrigo Nunes e PEREIRA, Ana Cláudia. Pullback dynamics of non-autonomous Timoshenko systems. Applied Mathematics and Optimization, v. 80, n. 2, p. 391-413, 2019Tradução . . Disponível em: https://doi.org/10.1007/s00245-017-9469-2. Acesso em: 27 nov. 2025.
    • APA

      Ma, T. F., Monteiro, R. N., & Pereira, A. C. (2019). Pullback dynamics of non-autonomous Timoshenko systems. Applied Mathematics and Optimization, 80( 2), 391-413. doi:10.1007/s00245-017-9469-2
    • NLM

      Ma TF, Monteiro RN, Pereira AC. Pullback dynamics of non-autonomous Timoshenko systems [Internet]. Applied Mathematics and Optimization. 2019 ; 80( 2): 391-413.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00245-017-9469-2
    • Vancouver

      Ma TF, Monteiro RN, Pereira AC. Pullback dynamics of non-autonomous Timoshenko systems [Internet]. Applied Mathematics and Optimization. 2019 ; 80( 2): 391-413.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s00245-017-9469-2
  • Source: Discrete and Continuous Dynamical Systems : Series B. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ANÁLISE GLOBAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CABALLERO, Rubén et al. Robustness of dynamically gradient multivalued dynamical systems. Discrete and Continuous Dynamical Systems : Series B, v. 24, n. 3, p. 1049-1077, 2019Tradução . . Disponível em: https://doi.org/10.3934/dcdsb.2019006. Acesso em: 27 nov. 2025.
    • APA

      Caballero, R., Carvalho, A. N. de, Marín-Rubio, P., & Valero, J. (2019). Robustness of dynamically gradient multivalued dynamical systems. Discrete and Continuous Dynamical Systems : Series B, 24( 3), 1049-1077. doi:10.3934/dcdsb.2019006
    • NLM

      Caballero R, Carvalho AN de, Marín-Rubio P, Valero J. Robustness of dynamically gradient multivalued dynamical systems [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2019 ; 24( 3): 1049-1077.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3934/dcdsb.2019006
    • Vancouver

      Caballero R, Carvalho AN de, Marín-Rubio P, Valero J. Robustness of dynamically gradient multivalued dynamical systems [Internet]. Discrete and Continuous Dynamical Systems : Series B. 2019 ; 24( 3): 1049-1077.[citado 2025 nov. 27 ] Available from: https://doi.org/10.3934/dcdsb.2019006
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CONTI, M et al. Asymptotics of viscoelastic materials with nonlinear density and memory effects. Journal of Differential Equations, v. 264, n. 7, p. 4235-4259, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2017.12.010. Acesso em: 27 nov. 2025.
    • APA

      Conti, M., Ma, T. F., Marchini, E. M., & Huertas, P. N. S. (2018). Asymptotics of viscoelastic materials with nonlinear density and memory effects. Journal of Differential Equations, 264( 7), 4235-4259. doi:10.1016/j.jde.2017.12.010
    • NLM

      Conti M, Ma TF, Marchini EM, Huertas PNS. Asymptotics of viscoelastic materials with nonlinear density and memory effects [Internet]. Journal of Differential Equations. 2018 ; 264( 7): 4235-4259.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2017.12.010
    • Vancouver

      Conti M, Ma TF, Marchini EM, Huertas PNS. Asymptotics of viscoelastic materials with nonlinear density and memory effects [Internet]. Journal of Differential Equations. 2018 ; 264( 7): 4235-4259.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2017.12.010
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, TEORIA DO ÍNDICE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REZENDE, Ketty A. de et al. Lyapunov graphs for circle valued functions. Topology and its Applications, v. 245, p. 62-91, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2018.06.008. Acesso em: 27 nov. 2025.
    • APA

      Rezende, K. A. de, Ledesma, G. G. E., Manzoli Neto, O., & Vago, G. M. (2018). Lyapunov graphs for circle valued functions. Topology and its Applications, 245, 62-91. doi:10.1016/j.topol.2018.06.008
    • NLM

      Rezende KA de, Ledesma GGE, Manzoli Neto O, Vago GM. Lyapunov graphs for circle valued functions [Internet]. Topology and its Applications. 2018 ; 245 62-91.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.topol.2018.06.008
    • Vancouver

      Rezende KA de, Ledesma GGE, Manzoli Neto O, Vago GM. Lyapunov graphs for circle valued functions [Internet]. Topology and its Applications. 2018 ; 245 62-91.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.topol.2018.06.008
  • Source: Topology and its Applications. Unidade: ICMC

    Subjects: SISTEMAS HAMILTONIANOS, DINÂMICA TOPOLÓGICA, TEORIA QUALITATIVA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LLIBRE, Jaume e OLIVEIRA, Regilene Delazari dos Santos e VALLS, Claudia. Phase portraits for some symmetric Riccati cubic polynomial differential equations. Topology and its Applications, v. 234, p. 220-237, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.topol.2017.11.023. Acesso em: 27 nov. 2025.
    • APA

      Llibre, J., Oliveira, R. D. dos S., & Valls, C. (2018). Phase portraits for some symmetric Riccati cubic polynomial differential equations. Topology and its Applications, 234, 220-237. doi:10.1016/j.topol.2017.11.023
    • NLM

      Llibre J, Oliveira RD dos S, Valls C. Phase portraits for some symmetric Riccati cubic polynomial differential equations [Internet]. Topology and its Applications. 2018 ; 234 220-237.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.topol.2017.11.023
    • Vancouver

      Llibre J, Oliveira RD dos S, Valls C. Phase portraits for some symmetric Riccati cubic polynomial differential equations [Internet]. Topology and its Applications. 2018 ; 234 220-237.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.topol.2017.11.023
  • Source: Stochastics and Dynamics. Unidade: IME

    Subjects: PROCESSOS ESTACIONÁRIOS, TEOREMAS LIMITES, PROBABILIDADE, DINÂMICA TOPOLÓGICA, TEORIA ERGÓDICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ABADI, Miguel Natalio e SAUSSOL, Benoît. Almost sure convergence of the clustering factor in α-mixing processes. Stochastics and Dynamics, v. 16, n. article º 1660016, p. 11 , 2016Tradução . . Disponível em: https://doi.org/10.1142/S0219493716600169. Acesso em: 27 nov. 2025.
    • APA

      Abadi, M. N., & Saussol, B. (2016). Almost sure convergence of the clustering factor in α-mixing processes. Stochastics and Dynamics, 16( article º 1660016), 11 . doi:10.1142/S0219493716600169
    • NLM

      Abadi MN, Saussol B. Almost sure convergence of the clustering factor in α-mixing processes [Internet]. Stochastics and Dynamics. 2016 ; 16( article º 1660016): 11 .[citado 2025 nov. 27 ] Available from: https://doi.org/10.1142/S0219493716600169
    • Vancouver

      Abadi MN, Saussol B. Almost sure convergence of the clustering factor in α-mixing processes [Internet]. Stochastics and Dynamics. 2016 ; 16( article º 1660016): 11 .[citado 2025 nov. 27 ] Available from: https://doi.org/10.1142/S0219493716600169
  • Source: Journal of Physics. A. Mathematical and Theoretical. Unidade: IME

    Assunto: DINÂMICA TOPOLÓGICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELITSKY, Vladimir e SCHUTZ, G. M. Microscopic position and structure of a shock in CA 184. Journal of Physics. A. Mathematical and Theoretical, v. 44, 2011Tradução . . Disponível em: https://doi.org/10.1088/1751-8113/44/44/445003. Acesso em: 27 nov. 2025.
    • APA

      Belitsky, V., & Schutz, G. M. (2011). Microscopic position and structure of a shock in CA 184. Journal of Physics. A. Mathematical and Theoretical, 44. doi:10.1088/1751-8113/44/44/445003
    • NLM

      Belitsky V, Schutz GM. Microscopic position and structure of a shock in CA 184 [Internet]. Journal of Physics. A. Mathematical and Theoretical. 2011 ; 44[citado 2025 nov. 27 ] Available from: https://doi.org/10.1088/1751-8113/44/44/445003
    • Vancouver

      Belitsky V, Schutz GM. Microscopic position and structure of a shock in CA 184 [Internet]. Journal of Physics. A. Mathematical and Theoretical. 2011 ; 44[citado 2025 nov. 27 ] Available from: https://doi.org/10.1088/1751-8113/44/44/445003
  • Source: Proceedings of the American Mathematical Society. Unidade: ICMC

    Subjects: OPERADORES LINEARES, DINÂMICA TOPOLÓGICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COBO, M e VIDALON, Carlos Teobaldo Gutiérrez e OLIVEIRA, C. R. de. Cantor singular continuous spectrum for operators along interval exchange transformations. Proceedings of the American Mathematical Society, v. 136, n. 3, p. 923-930, 2008Tradução . . Disponível em: https://doi.org/10.1090/S0002-9939-07-09074-0. Acesso em: 27 nov. 2025.
    • APA

      Cobo, M., Vidalon, C. T. G., & Oliveira, C. R. de. (2008). Cantor singular continuous spectrum for operators along interval exchange transformations. Proceedings of the American Mathematical Society, 136( 3), 923-930. doi:10.1090/S0002-9939-07-09074-0
    • NLM

      Cobo M, Vidalon CTG, Oliveira CR de. Cantor singular continuous spectrum for operators along interval exchange transformations [Internet]. Proceedings of the American Mathematical Society. 2008 ; 136( 3): 923-930.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1090/S0002-9939-07-09074-0
    • Vancouver

      Cobo M, Vidalon CTG, Oliveira CR de. Cantor singular continuous spectrum for operators along interval exchange transformations [Internet]. Proceedings of the American Mathematical Society. 2008 ; 136( 3): 923-930.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1090/S0002-9939-07-09074-0
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, DINÂMICA TOPOLÓGICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e FEDERSON, Marcia. Limit sets and the Poincaré-Bendixson theorem in impulsive semidynamical systems. Journal of Differential Equations, v. 244, n. 9, p. 2334-2349, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2008.02.007. Acesso em: 27 nov. 2025.
    • APA

      Bonotto, E. de M., & Federson, M. (2008). Limit sets and the Poincaré-Bendixson theorem in impulsive semidynamical systems. Journal of Differential Equations, 244( 9), 2334-2349. doi:10.1016/j.jde.2008.02.007
    • NLM

      Bonotto E de M, Federson M. Limit sets and the Poincaré-Bendixson theorem in impulsive semidynamical systems [Internet]. Journal of Differential Equations. 2008 ; 244( 9): 2334-2349.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2008.02.007
    • Vancouver

      Bonotto E de M, Federson M. Limit sets and the Poincaré-Bendixson theorem in impulsive semidynamical systems [Internet]. Journal of Differential Equations. 2008 ; 244( 9): 2334-2349.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2008.02.007
  • Source: Journal of Dynamical and Control Systems. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, TEORIA DO ÍNDICE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERTOLIM, Maria Alice e REZENDE, Ketty Abaroa de e MANZOLI NETO, Oziride. Isolating blocks for periodic orbits. Journal of Dynamical and Control Systems, v. 13, n. Ja 2007, p. 121-134, 2007Tradução . . Disponível em: https://doi.org/10.1007/s10883-006-9006-0. Acesso em: 27 nov. 2025.
    • APA

      Bertolim, M. A., Rezende, K. A. de, & Manzoli Neto, O. (2007). Isolating blocks for periodic orbits. Journal of Dynamical and Control Systems, 13( Ja 2007), 121-134. doi:10.1007/s10883-006-9006-0
    • NLM

      Bertolim MA, Rezende KA de, Manzoli Neto O. Isolating blocks for periodic orbits [Internet]. Journal of Dynamical and Control Systems. 2007 ; 13( Ja 2007): 121-134.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10883-006-9006-0
    • Vancouver

      Bertolim MA, Rezende KA de, Manzoli Neto O. Isolating blocks for periodic orbits [Internet]. Journal of Dynamical and Control Systems. 2007 ; 13( Ja 2007): 121-134.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10883-006-9006-0
  • Source: Journal of Differential Equations. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS COM RETARDAMENTO, DINÂMICA TOPOLÓGICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FEDERSON, Marcia e TABOAS, Placido Zoega. Topological dynamics of retarded functional differential equations. Journal of Differential Equations, v. 195, n. 2, p. 313-331, 2003Tradução . . Disponível em: https://doi.org/10.1016/S0022-0396(03)00061-5. Acesso em: 27 nov. 2025.
    • APA

      Federson, M., & Taboas, P. Z. (2003). Topological dynamics of retarded functional differential equations. Journal of Differential Equations, 195( 2), 313-331. doi:10.1016/S0022-0396(03)00061-5
    • NLM

      Federson M, Taboas PZ. Topological dynamics of retarded functional differential equations [Internet]. Journal of Differential Equations. 2003 ; 195( 2): 313-331.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/S0022-0396(03)00061-5
    • Vancouver

      Federson M, Taboas PZ. Topological dynamics of retarded functional differential equations [Internet]. Journal of Differential Equations. 2003 ; 195( 2): 313-331.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/S0022-0396(03)00061-5

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025