Limit sets and the Poincaré-Bendixson theorem in impulsive semidynamical systems (2008)
- Authors:
- Autor USP: FEDERSON, MÁRCIA CRISTINA ANDERSON BRAZ - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.jde.2008.02.007
- Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS; DINÂMICA TOPOLÓGICA
- Keywords: Impulsive semidynamical systems; Limit sets; Poincaré–Bendixson Theorem
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Differential Equations
- ISSN: 0022-0396
- Volume/Número/Paginação/Ano: v. 244, n. 9, p. 2334-2349, Mai. 2008
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
BONOTTO, Everaldo de Mello e FEDERSON, Marcia. Limit sets and the Poincaré-Bendixson theorem in impulsive semidynamical systems. Journal of Differential Equations, v. 244, n. 9, p. 2334-2349, 2008Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2008.02.007. Acesso em: 08 jan. 2026. -
APA
Bonotto, E. de M., & Federson, M. (2008). Limit sets and the Poincaré-Bendixson theorem in impulsive semidynamical systems. Journal of Differential Equations, 244( 9), 2334-2349. doi:10.1016/j.jde.2008.02.007 -
NLM
Bonotto E de M, Federson M. Limit sets and the Poincaré-Bendixson theorem in impulsive semidynamical systems [Internet]. Journal of Differential Equations. 2008 ; 244( 9): 2334-2349.[citado 2026 jan. 08 ] Available from: https://doi.org/10.1016/j.jde.2008.02.007 -
Vancouver
Bonotto E de M, Federson M. Limit sets and the Poincaré-Bendixson theorem in impulsive semidynamical systems [Internet]. Journal of Differential Equations. 2008 ; 244( 9): 2334-2349.[citado 2026 jan. 08 ] Available from: https://doi.org/10.1016/j.jde.2008.02.007 - Non-oscillation criterion for impulsive differential equations with delay
- Lyapunov stability for measure differential equations and dynamic equations on time scales
- Regular stability for generalized ODE
- A continuous dependence result for generalized linear differential equation: application on FDEs
- Cauchy-Stieltjes integral on time scales and application
- Existence and impulsive stability for second order retarded differential equations
- Path integration and applications
- It's time for the linear non-homogeneous PDEs
- Lyapunov stability for measure differential equations and dynamic equations on time scales
- Equações diferenciais em medida retardadas e equações dinâmicas com retardos em time scales
Informações sobre o DOI: 10.1016/j.jde.2008.02.007 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
