Regular stability for generalized ODE (2019)
- Authors:
- Autor USP: FEDERSON, MARCIA CRISTINA ANDERSON BRAZ - ICMC
- Unidade: ICMC
- Assunto: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS
- Language: Inglês
- Imprenta:
- Publisher: ICMC-USP
- Publisher place: São Carlos
- Date published: 2019
- Source:
- Título: Abstracts
- Conference titles: ICMC Summer Meeting on Differential Equations
-
ABNT
SILVA, Fernanda Andrade da e FEDERSON, Marcia e TOON, Eduard. Regular stability for generalized ODE. 2019, Anais.. São Carlos: ICMC-USP, 2019. Disponível em: http://summer.icmc.usp.br/summers/summer19/pg_abstract.php. Acesso em: 27 dez. 2025. -
APA
Silva, F. A. da, Federson, M., & Toon, E. (2019). Regular stability for generalized ODE. In Abstracts. São Carlos: ICMC-USP. Recuperado de http://summer.icmc.usp.br/summers/summer19/pg_abstract.php -
NLM
Silva FA da, Federson M, Toon E. Regular stability for generalized ODE [Internet]. Abstracts. 2019 ;[citado 2025 dez. 27 ] Available from: http://summer.icmc.usp.br/summers/summer19/pg_abstract.php -
Vancouver
Silva FA da, Federson M, Toon E. Regular stability for generalized ODE [Internet]. Abstracts. 2019 ;[citado 2025 dez. 27 ] Available from: http://summer.icmc.usp.br/summers/summer19/pg_abstract.php - Non-oscillation criterion for impulsive differential equations with delay
- Lyapunov stability for measure differential equations and dynamic equations on time scales
- A continuous dependence result for generalized linear differential equation: application on FDEs
- Cauchy-Stieltjes integral on time scales and application
- Path integration and applications
- It's time for the linear non-homogeneous PDEs
- Limit sets and the Poincaré-Bendixson theorem in impulsive semidynamical systems
- Existence and impulsive stability for second order retarded differential equations
- A new continuous dependence result for impulsive retarded functional differential equations
- Theory of oscillations for functional differential equations with implulses
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
