A heterogeneous network-based positive and unlabeled learning approach to detect fake news (2021)
Fonte: Lecture Notes in Artificial Intelligence. Nome do evento: Brazilian Conference on Intelligent Systems - BRACIS. Unidade: ICMC
Assuntos: FAKE NEWS, PROCESSAMENTO DE TEXTO, APRENDIZADO COMPUTACIONAL
ABNT
SOUZA, Mariana Caravanti de et al. A heterogeneous network-based positive and unlabeled learning approach to detect fake news. Lecture Notes in Artificial Intelligence. Cham: Springer. Disponível em: https://doi.org/10.1007/978-3-030-91699-2_1. Acesso em: 04 nov. 2025. , 2021APA
Souza, M. C. de, Nogueira, B. M., Rossi, R. G., Marcacini, R. M., & Rezende, S. O. (2021). A heterogeneous network-based positive and unlabeled learning approach to detect fake news. Lecture Notes in Artificial Intelligence. Cham: Springer. doi:10.1007/978-3-030-91699-2_1NLM
Souza MC de, Nogueira BM, Rossi RG, Marcacini RM, Rezende SO. A heterogeneous network-based positive and unlabeled learning approach to detect fake news [Internet]. Lecture Notes in Artificial Intelligence. 2021 ; 13074 3-18.[citado 2025 nov. 04 ] Available from: https://doi.org/10.1007/978-3-030-91699-2_1Vancouver
Souza MC de, Nogueira BM, Rossi RG, Marcacini RM, Rezende SO. A heterogeneous network-based positive and unlabeled learning approach to detect fake news [Internet]. Lecture Notes in Artificial Intelligence. 2021 ; 13074 3-18.[citado 2025 nov. 04 ] Available from: https://doi.org/10.1007/978-3-030-91699-2_1
