Filtros : "Journal of Differential Equations" Removido: "Financiamento FAPESP" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Differential Equations. Unidades: FFCLRP, IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FRID, Hermano et al. Asymptotic decay of Besicovitch almost periodic solutions to stochastic scalar conservation laws. Journal of Differential Equations, v. 453, n. artigo 113914, p. 1-13, 2026Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2025.113914. Acesso em: 27 nov. 2025.
    • APA

      Frid, H., Jin, R., Li, Y., & Nariyoshi, J. F. da C. (2026). Asymptotic decay of Besicovitch almost periodic solutions to stochastic scalar conservation laws. Journal of Differential Equations, 453( artigo 113914), 1-13. doi:10.1016/j.jde.2025.113914
    • NLM

      Frid H, Jin R, Li Y, Nariyoshi JF da C. Asymptotic decay of Besicovitch almost periodic solutions to stochastic scalar conservation laws [Internet]. Journal of Differential Equations. 2026 ; 453( artigo 113914): 1-13.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2025.113914
    • Vancouver

      Frid H, Jin R, Li Y, Nariyoshi JF da C. Asymptotic decay of Besicovitch almost periodic solutions to stochastic scalar conservation laws [Internet]. Journal of Differential Equations. 2026 ; 453( artigo 113914): 1-13.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2025.113914
  • Fonte: Journal of Differential Equations. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS COM RETARDAMENTO, SOLUÇÕES PERIÓDICAS, GRAU TOPOLÓGICO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AMSTER, Pablo e BENEVIERI, Pierluigi. Global bifurcation results for a delay differential system representing a chemostat model. Journal of Differential Equations, v. 434, p. 1-32, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2025.113222. Acesso em: 27 nov. 2025.
    • APA

      Amster, P., & Benevieri, P. (2025). Global bifurcation results for a delay differential system representing a chemostat model. Journal of Differential Equations, 434, 1-32. doi:10.1016/j.jde.2025.113222
    • NLM

      Amster P, Benevieri P. Global bifurcation results for a delay differential system representing a chemostat model [Internet]. Journal of Differential Equations. 2025 ; 434 1-32.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2025.113222
    • Vancouver

      Amster P, Benevieri P. Global bifurcation results for a delay differential system representing a chemostat model [Internet]. Journal of Differential Equations. 2025 ; 434 1-32.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2025.113222
  • Fonte: Journal of Differential Equations. Unidade: FFCLRP

    Assuntos: SOLUÇÕES QUASE PERIÓDICAS, FUNÇÕES PERIÓDICAS, SINGULARIDADES

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ESPITIA, Claudia e FRID, Hermano e MARROQUIN, Daniel. Invariant measures for stochastic conservation laws with Lipschitz flux in the space of almost periodic functions. Journal of Differential Equations, v. 376, p. 39-70, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2023.08.025. Acesso em: 27 nov. 2025.
    • APA

      Espitia, C., Frid, H., & Marroquin, D. (2023). Invariant measures for stochastic conservation laws with Lipschitz flux in the space of almost periodic functions. Journal of Differential Equations, 376, 39-70. doi:10.1016/j.jde.2023.08.025
    • NLM

      Espitia C, Frid H, Marroquin D. Invariant measures for stochastic conservation laws with Lipschitz flux in the space of almost periodic functions [Internet]. Journal of Differential Equations. 2023 ; 376 39-70.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2023.08.025
    • Vancouver

      Espitia C, Frid H, Marroquin D. Invariant measures for stochastic conservation laws with Lipschitz flux in the space of almost periodic functions [Internet]. Journal of Differential Equations. 2023 ; 376 39-70.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2023.08.025
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS, SISTEMAS HAMILTONIANOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GUIMARÃES, Angelo e MOREIRA DOS SANTOS, Ederson. On Hamiltonian systems with critical Sobolev exponents. Journal of Differential Equations, v. 360, p. 314-346, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2023.02.050. Acesso em: 27 nov. 2025.
    • APA

      Guimarães, A., & Moreira dos Santos, E. (2023). On Hamiltonian systems with critical Sobolev exponents. Journal of Differential Equations, 360, 314-346. doi:10.1016/j.jde.2023.02.050
    • NLM

      Guimarães A, Moreira dos Santos E. On Hamiltonian systems with critical Sobolev exponents [Internet]. Journal of Differential Equations. 2023 ; 360 314-346.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2023.02.050
    • Vancouver

      Guimarães A, Moreira dos Santos E. On Hamiltonian systems with critical Sobolev exponents [Internet]. Journal of Differential Equations. 2023 ; 360 314-346.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2023.02.050
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, TEORIA DO ÍNDICE

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Partial functional differential equations and Conley index. Journal of Differential Equations, v. 366, p. Se 2023, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2023.04.015. Acesso em: 27 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2023). Partial functional differential equations and Conley index. Journal of Differential Equations, 366, Se 2023. doi:10.1016/j.jde.2023.04.015
    • NLM

      Carbinatto M do C, Rybakowski KP. Partial functional differential equations and Conley index [Internet]. Journal of Differential Equations. 2023 ; 366 Se 2023.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2023.04.015
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Partial functional differential equations and Conley index [Internet]. Journal of Differential Equations. 2023 ; 366 Se 2023.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2023.04.015
  • Fonte: Journal of Differential Equations. Unidade: IME

    Assuntos: EQUAÇÃO DE SCHRODINGER, EQUAÇÕES DIFERENCIAIS PARCIAIS, MECÂNICA QUÂNTICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOLOSHCHAPOVA, Nataliia. Dynamical and variational properties of the NLS-δs′ equation on the star graph. Journal of Differential Equations, v. 310, p. 1-44, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.11.047. Acesso em: 27 nov. 2025.
    • APA

      Goloshchapova, N. (2022). Dynamical and variational properties of the NLS-δs′ equation on the star graph. Journal of Differential Equations, 310, 1-44. doi:10.1016/j.jde.2021.11.047
    • NLM

      Goloshchapova N. Dynamical and variational properties of the NLS-δs′ equation on the star graph [Internet]. Journal of Differential Equations. 2022 ; 310 1-44.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.11.047
    • Vancouver

      Goloshchapova N. Dynamical and variational properties of the NLS-δs′ equation on the star graph [Internet]. Journal of Differential Equations. 2022 ; 310 1-44.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.11.047
  • Fonte: Journal of Differential Equations. Unidades: IME, ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José María e NAKASATO, Jean Carlos e PEREIRA, Marcone Corrêa. The p-Laplacian equation in thin domains: The unfolding approach. Journal of Differential Equations, v. 274, p. 1-34, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2020.12.004. Acesso em: 27 nov. 2025.
    • APA

      Arrieta, J. M., Nakasato, J. C., & Pereira, M. C. (2021). The p-Laplacian equation in thin domains: The unfolding approach. Journal of Differential Equations, 274, 1-34. doi:10.1016/j.jde.2020.12.004
    • NLM

      Arrieta JM, Nakasato JC, Pereira MC. The p-Laplacian equation in thin domains: The unfolding approach [Internet]. Journal of Differential Equations. 2021 ; 274 1-34.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2020.12.004
    • Vancouver

      Arrieta JM, Nakasato JC, Pereira MC. The p-Laplacian equation in thin domains: The unfolding approach [Internet]. Journal of Differential Equations. 2021 ; 274 1-34.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2020.12.004
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: ANÁLISE REAL, EQUAÇÕES DIFERENCIAIS FUNCIONAIS, DINÂMICA TOPOLÓGICA, ESPAÇOS DE BANACH

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Fernanda Andrade da et al. Converse Lyapunov theorems for measure functional differential equations. Journal of Differential Equations, v. 286, p. 1-46, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.02.060. Acesso em: 27 nov. 2025.
    • APA

      Silva, F. A. da, Federson, M., Grau, R., & Toon, E. (2021). Converse Lyapunov theorems for measure functional differential equations. Journal of Differential Equations, 286, 1-46. doi:10.1016/j.jde.2021.02.060
    • NLM

      Silva FA da, Federson M, Grau R, Toon E. Converse Lyapunov theorems for measure functional differential equations [Internet]. Journal of Differential Equations. 2021 ; 286 1-46.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.02.060
    • Vancouver

      Silva FA da, Federson M, Grau R, Toon E. Converse Lyapunov theorems for measure functional differential equations [Internet]. Journal of Differential Equations. 2021 ; 286 1-46.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.02.060
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES, SISTEMAS DISSIPATIVO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CUI, Hongyong et al. Smoothing and finite-dimensionality of uniform attractors in Banach spaces. Journal of Differential Equations, v. 285, p. 383-428, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.03.013. Acesso em: 27 nov. 2025.
    • APA

      Cui, H., Carvalho, A. N. de, Cunha, A. C., & Langa, J. A. (2021). Smoothing and finite-dimensionality of uniform attractors in Banach spaces. Journal of Differential Equations, 285, 383-428. doi:10.1016/j.jde.2021.03.013
    • NLM

      Cui H, Carvalho AN de, Cunha AC, Langa JA. Smoothing and finite-dimensionality of uniform attractors in Banach spaces [Internet]. Journal of Differential Equations. 2021 ; 285 383-428.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.03.013
    • Vancouver

      Cui H, Carvalho AN de, Cunha AC, Langa JA. Smoothing and finite-dimensionality of uniform attractors in Banach spaces [Internet]. Journal of Differential Equations. 2021 ; 285 383-428.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.03.013
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DA ONDA, EQUAÇÕES DIFERENCIAIS PARCIAIS HIPERBÓLICAS, OBSERVABILIDADE

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BURIOL, Celene et al. Asymptotic stability for a generalized nonlinear Klein-Gordon system. Journal of Differential Equations, v. 280, p. 517-545, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2021.01.011. Acesso em: 27 nov. 2025.
    • APA

      Buriol, C., Delatorre, L. G., Martinez, V. H. G., Soares, D. C., & Tavares, E. H. G. (2021). Asymptotic stability for a generalized nonlinear Klein-Gordon system. Journal of Differential Equations, 280, 517-545. doi:10.1016/j.jde.2021.01.011
    • NLM

      Buriol C, Delatorre LG, Martinez VHG, Soares DC, Tavares EHG. Asymptotic stability for a generalized nonlinear Klein-Gordon system [Internet]. Journal of Differential Equations. 2021 ; 280 517-545.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.01.011
    • Vancouver

      Buriol C, Delatorre LG, Martinez VHG, Soares DC, Tavares EHG. Asymptotic stability for a generalized nonlinear Klein-Gordon system [Internet]. Journal of Differential Equations. 2021 ; 280 517-545.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2021.01.011
  • Fonte: Journal of Differential Equations. Unidade: IME

    Assuntos: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, TEORIA DA BIFURCAÇÃO, ANÁLISE REAL

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BENEVIERI, Pierluigi e MESQUITA, Jaqueline Godoy e PEREIRA, Aldo. Global bifurcation results for nonlinear dynamic equations on time scales. Journal of Differential Equations, v. 269, n. 12, p. 11252-11278, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2020.08.015. Acesso em: 27 nov. 2025.
    • APA

      Benevieri, P., Mesquita, J. G., & Pereira, A. (2020). Global bifurcation results for nonlinear dynamic equations on time scales. Journal of Differential Equations, 269( 12), 11252-11278. doi:10.1016/j.jde.2020.08.015
    • NLM

      Benevieri P, Mesquita JG, Pereira A. Global bifurcation results for nonlinear dynamic equations on time scales [Internet]. Journal of Differential Equations. 2020 ; 269( 12): 11252-11278.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2020.08.015
    • Vancouver

      Benevieri P, Mesquita JG, Pereira A. Global bifurcation results for nonlinear dynamic equations on time scales [Internet]. Journal of Differential Equations. 2020 ; 269( 12): 11252-11278.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2020.08.015
  • Fonte: Journal of Differential Equations. Unidade: FFCLRP

    Assuntos: CONTROLABILIDADE, PROBLEMA DE CAUCHY, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HERNANDEZ, Eduardo e WU, Jianhong e CHADHA, Alka. Existence, uniqueness and approximate controllability of abstract differential equations with state-dependent delay. Journal of Differential Equations, v. 269, n. 10, p. 8701-8735, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2020.06.030. Acesso em: 27 nov. 2025.
    • APA

      Hernandez, E., Wu, J., & Chadha, A. (2020). Existence, uniqueness and approximate controllability of abstract differential equations with state-dependent delay. Journal of Differential Equations, 269( 10), 8701-8735. doi:10.1016/j.jde.2020.06.030
    • NLM

      Hernandez E, Wu J, Chadha A. Existence, uniqueness and approximate controllability of abstract differential equations with state-dependent delay [Internet]. Journal of Differential Equations. 2020 ; 269( 10): 8701-8735.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2020.06.030
    • Vancouver

      Hernandez E, Wu J, Chadha A. Existence, uniqueness and approximate controllability of abstract differential equations with state-dependent delay [Internet]. Journal of Differential Equations. 2020 ; 269( 10): 8701-8735.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2020.06.030
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: SISTEMAS DISCRETOS, SISTEMAS DINÂMICOS, OPERADORES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RODRIGUES, Hildebrando Munhoz e SOLA-MORALES, Joan. An example on Lyapunov stability and linearization. Journal of Differential Equations, v. 269, p. 1349-1359, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2020.01.027. Acesso em: 27 nov. 2025.
    • APA

      Rodrigues, H. M., & Sola-Morales, J. (2020). An example on Lyapunov stability and linearization. Journal of Differential Equations, 269, 1349-1359. doi:10.1016/j.jde.2020.01.027
    • NLM

      Rodrigues HM, Sola-Morales J. An example on Lyapunov stability and linearization [Internet]. Journal of Differential Equations. 2020 ; 269 1349-1359.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2020.01.027
    • Vancouver

      Rodrigues HM, Sola-Morales J. An example on Lyapunov stability and linearization [Internet]. Journal of Differential Equations. 2020 ; 269 1349-1359.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2020.01.027
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: MÉTODOS VARIACIONAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ITURRIAGA, Leonelo e MASSA, Eugenio Tommaso. Sobolev versus Hölder local minimizers in degenerate Kirchhoff type problems. Journal of Differential Equations, v. 269, n. 5, p. 4381-4405, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2020.03.031. Acesso em: 27 nov. 2025.
    • APA

      Iturriaga, L., & Massa, E. T. (2020). Sobolev versus Hölder local minimizers in degenerate Kirchhoff type problems. Journal of Differential Equations, 269( 5), 4381-4405. doi:10.1016/j.jde.2020.03.031
    • NLM

      Iturriaga L, Massa ET. Sobolev versus Hölder local minimizers in degenerate Kirchhoff type problems [Internet]. Journal of Differential Equations. 2020 ; 269( 5): 4381-4405.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2020.03.031
    • Vancouver

      Iturriaga L, Massa ET. Sobolev versus Hölder local minimizers in degenerate Kirchhoff type problems [Internet]. Journal of Differential Equations. 2020 ; 269( 5): 4381-4405.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2020.03.031
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: TOPOLOGIA DINÂMICA, TRANSVERSALIDADE, EQUAÇÕES DIFERENCIAIS PARCIAIS, INVARIANTES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Lipschitz perturbations of Morse-Smale semigroups. Journal of Differential Equations, v. 269, n. 3, p. 1904-1943, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2020.01.024. Acesso em: 27 nov. 2025.
    • APA

      Bortolan, M. C., Cardoso, C. A. E. das N., Carvalho, A. N. de, & Pires, L. (2020). Lipschitz perturbations of Morse-Smale semigroups. Journal of Differential Equations, 269( 3), 1904-1943. doi:10.1016/j.jde.2020.01.024
    • NLM

      Bortolan MC, Cardoso CAE das N, Carvalho AN de, Pires L. Lipschitz perturbations of Morse-Smale semigroups [Internet]. Journal of Differential Equations. 2020 ; 269( 3): 1904-1943.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2020.01.024
    • Vancouver

      Bortolan MC, Cardoso CAE das N, Carvalho AN de, Pires L. Lipschitz perturbations of Morse-Smale semigroups [Internet]. Journal of Differential Equations. 2020 ; 269( 3): 1904-1943.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2020.01.024
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS DE 2ª ORDEM, SISTEMAS SOBREDETERMINADOS, SIMETRIA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOREIRA DOS SANTOS, Ederson e NORNBERG, Gabrielle. Symmetry properties of positive solutions for fully nonlinear elliptic systems. Journal of Differential Equations, v. 269, n. 5, p. 4175-4191, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2020.03.023. Acesso em: 27 nov. 2025.
    • APA

      Moreira dos Santos, E., & Nornberg, G. (2020). Symmetry properties of positive solutions for fully nonlinear elliptic systems. Journal of Differential Equations, 269( 5), 4175-4191. doi:10.1016/j.jde.2020.03.023
    • NLM

      Moreira dos Santos E, Nornberg G. Symmetry properties of positive solutions for fully nonlinear elliptic systems [Internet]. Journal of Differential Equations. 2020 ; 269( 5): 4175-4191.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2020.03.023
    • Vancouver

      Moreira dos Santos E, Nornberg G. Symmetry properties of positive solutions for fully nonlinear elliptic systems [Internet]. Journal of Differential Equations. 2020 ; 269( 5): 4175-4191.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2020.03.023
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS FUNCIONAIS, SISTEMAS DINÂMICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e DEMUNER, D. P. e JIMENEZ, M. Z. Convergence for non-autonomous semidynamical systems with impulses. Journal of Differential Equations, v. 266, n. Ja 2019, p. 227-256, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2018.07.035. Acesso em: 27 nov. 2025.
    • APA

      Bonotto, E. de M., Demuner, D. P., & Jimenez, M. Z. (2019). Convergence for non-autonomous semidynamical systems with impulses. Journal of Differential Equations, 266( Ja 2019), 227-256. doi:10.1016/j.jde.2018.07.035
    • NLM

      Bonotto E de M, Demuner DP, Jimenez MZ. Convergence for non-autonomous semidynamical systems with impulses [Internet]. Journal of Differential Equations. 2019 ; 266( Ja 2019): 227-256.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2018.07.035
    • Vancouver

      Bonotto E de M, Demuner DP, Jimenez MZ. Convergence for non-autonomous semidynamical systems with impulses [Internet]. Journal of Differential Equations. 2019 ; 266( Ja 2019): 227-256.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2018.07.035
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES LINEARES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Evandro Raimundo da. Local solvability for a class of linear operators in Triebel-Lizorkin spaces. Journal of Differential Equations, v. 267, n. 5, p. 3199-3231, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2019.04.002. Acesso em: 27 nov. 2025.
    • APA

      Silva, E. R. da. (2019). Local solvability for a class of linear operators in Triebel-Lizorkin spaces. Journal of Differential Equations, 267( 5), 3199-3231. doi:10.1016/j.jde.2019.04.002
    • NLM

      Silva ER da. Local solvability for a class of linear operators in Triebel-Lizorkin spaces [Internet]. Journal of Differential Equations. 2019 ; 267( 5): 3199-3231.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2019.04.002
    • Vancouver

      Silva ER da. Local solvability for a class of linear operators in Triebel-Lizorkin spaces [Internet]. Journal of Differential Equations. 2019 ; 267( 5): 3199-3231.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2019.04.002
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, ANÁLISE GLOBAL

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BERGAMASCO, Adalberto Panobianco e LAGUNA, Renato Andrielli e ZANI, Sérgio Luís. Global hypoellipticity of planar complex vector fields. Journal of Differential Equations, v. 267, n. 9, p. 5220-5257, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2019.05.027. Acesso em: 27 nov. 2025.
    • APA

      Bergamasco, A. P., Laguna, R. A., & Zani, S. L. (2019). Global hypoellipticity of planar complex vector fields. Journal of Differential Equations, 267( 9), 5220-5257. doi:10.1016/j.jde.2019.05.027
    • NLM

      Bergamasco AP, Laguna RA, Zani SL. Global hypoellipticity of planar complex vector fields [Internet]. Journal of Differential Equations. 2019 ; 267( 9): 5220-5257.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2019.05.027
    • Vancouver

      Bergamasco AP, Laguna RA, Zani SL. Global hypoellipticity of planar complex vector fields [Internet]. Journal of Differential Equations. 2019 ; 267( 9): 5220-5257.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2019.05.027
  • Fonte: Journal of Differential Equations. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      D'AVENIA, Pietro e SICILIANO, Gaetano. Nonlinear Schrödinger equation in the Bopp–Podolsky electrodynamics: solutions in the electrostatic case. Journal of Differential Equations, v. 267, n. 2, p. 1025-1065, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2019.02.001. Acesso em: 27 nov. 2025.
    • APA

      d'Avenia, P., & Siciliano, G. (2019). Nonlinear Schrödinger equation in the Bopp–Podolsky electrodynamics: solutions in the electrostatic case. Journal of Differential Equations, 267( 2), 1025-1065. doi:10.1016/j.jde.2019.02.001
    • NLM

      d'Avenia P, Siciliano G. Nonlinear Schrödinger equation in the Bopp–Podolsky electrodynamics: solutions in the electrostatic case [Internet]. Journal of Differential Equations. 2019 ; 267( 2): 1025-1065.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2019.02.001
    • Vancouver

      d'Avenia P, Siciliano G. Nonlinear Schrödinger equation in the Bopp–Podolsky electrodynamics: solutions in the electrostatic case [Internet]. Journal of Differential Equations. 2019 ; 267( 2): 1025-1065.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jde.2019.02.001

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025