An example on Lyapunov stability and linearization (2020)
- Authors:
- Autor USP: RODRIGUES, HILDEBRANDO MUNHOZ - ICMC
- Unidade: ICMC
- DOI: 10.1016/j.jde.2020.01.027
- Subjects: SISTEMAS DISCRETOS; SISTEMAS DINÂMICOS; OPERADORES
- Keywords: Lyapunov stability of fixed points; Linearization in infinite dimensions
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Maryland Heights
- Date published: 2020
- Source:
- Título: Journal of Differential Equations
- ISSN: 0022-0396
- Volume/Número/Paginação/Ano: v. 269, p. 1349-1359, 2020
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
RODRIGUES, Hildebrando Munhoz e SOLA-MORALES, Joan. An example on Lyapunov stability and linearization. Journal of Differential Equations, v. 269, p. 1349-1359, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2020.01.027. Acesso em: 15 fev. 2026. -
APA
Rodrigues, H. M., & Sola-Morales, J. (2020). An example on Lyapunov stability and linearization. Journal of Differential Equations, 269, 1349-1359. doi:10.1016/j.jde.2020.01.027 -
NLM
Rodrigues HM, Sola-Morales J. An example on Lyapunov stability and linearization [Internet]. Journal of Differential Equations. 2020 ; 269 1349-1359.[citado 2026 fev. 15 ] Available from: https://doi.org/10.1016/j.jde.2020.01.027 -
Vancouver
Rodrigues HM, Sola-Morales J. An example on Lyapunov stability and linearization [Internet]. Journal of Differential Equations. 2020 ; 269 1349-1359.[citado 2026 fev. 15 ] Available from: https://doi.org/10.1016/j.jde.2020.01.027 - Applications of robust synchronization to communication systems
- Differentiability with respect to parameters in global smooth linearization
- Invertible contractions and asymptotically stable ODE’S that are not 'C POT. 1'-linearizable
- On bifurcation and symmetry of solutions of symmetric nonlinear equations with odd-harmonic forcings
- Criterio de wall
- Periodic solutions of forced nonlinear second order equations symmetry and bifurcations
- Uniform dissipativeness and synchronization on nonautonomous equation
- Symmetry and bifurcation to 2pi / m- periodic solutions of nonlinear second order equations with 2pi / m-periodic forcings
- On harmonic and subharmonic solutions of nonlinear second order equations: symmetry and bifurcation
- Relative asymptotic equivalence of evolution equations
Informações sobre o DOI: 10.1016/j.jde.2020.01.027 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2986698.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
