Invariant measures for stochastic conservation laws with Lipschitz flux in the space of almost periodic functions (2023)
- Authors:
- Autor USP: FRID NETO, HERMANO - FFCLRP
- Unidade: FFCLRP
- DOI: 10.1016/j.jde.2023.08.025
- Subjects: SOLUÇÕES QUASE PERIÓDICAS; FUNÇÕES PERIÓDICAS; SINGULARIDADES
- Keywords: Stochastic partial differential equations; Scalar conservation laws; Invariant measures
- Language: Inglês
- Imprenta:
- Publisher place: Maryland Heights
- Date published: 2023
- Source:
- Título: Journal of Differential Equations
- ISSN: 0022-0396
- Volume/Número/Paginação/Ano: v. 376, p. 39-70, 2023
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
ESPITIA, Claudia e FRID, Hermano e MARROQUIN, Daniel. Invariant measures for stochastic conservation laws with Lipschitz flux in the space of almost periodic functions. Journal of Differential Equations, v. 376, p. 39-70, 2023Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2023.08.025. Acesso em: 28 dez. 2025. -
APA
Espitia, C., Frid, H., & Marroquin, D. (2023). Invariant measures for stochastic conservation laws with Lipschitz flux in the space of almost periodic functions. Journal of Differential Equations, 376, 39-70. doi:10.1016/j.jde.2023.08.025 -
NLM
Espitia C, Frid H, Marroquin D. Invariant measures for stochastic conservation laws with Lipschitz flux in the space of almost periodic functions [Internet]. Journal of Differential Equations. 2023 ; 376 39-70.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1016/j.jde.2023.08.025 -
Vancouver
Espitia C, Frid H, Marroquin D. Invariant measures for stochastic conservation laws with Lipschitz flux in the space of almost periodic functions [Internet]. Journal of Differential Equations. 2023 ; 376 39-70.[citado 2025 dez. 28 ] Available from: https://doi.org/10.1016/j.jde.2023.08.025 - On short wave-long wave interactions in the relativistic context: application to the relativistic euler equations
- On short wave-long wave interactions in the relativistic context: application to the Relativistic Euler Equations
- On short wave-long wave interactions in the relativistic context
- Recent results on asymptotic behavior of almost periodic solutions of stochastic parabolic-hyperbolic conservation laws
- On Hodge decomposition, effective viscous flux and compressible Navier-Stokes
- Relativistic fluid flows in a bounded domain
- A boundary value problem for a class of anisotropic stochastic degenerate parabolic-hyperbolic equations
- Asymptotic decay of Besicovitch almost periodic solutions to stochastic scalar conservation laws
Informações sobre o DOI: 10.1016/j.jde.2023.08.025 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 003194546.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
