Filtros : "Communications in Nonlinear Science and Numerical Simulation" "Financiamento FAPESP" Removido: "Silva, Matheus Palmero" Limpar

Filtros



Refine with date range


  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Subjects: TEORIA QUALITATIVA, TEORIA DA BIFURCAÇÃO, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRUZ, Leonardo Pereira Costa da e OLIVEIRA, Regilene Delazari dos Santos e TORREGROSA, Joan. Limit cycles in piecewise quadratic Kolmogorov systems. Communications in Nonlinear Science and Numerical Simulation, v. 152, n. Ja 2026, p. 1-16, 2026Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2025.109285. Acesso em: 05 nov. 2025.
    • APA

      Cruz, L. P. C. da, Oliveira, R. D. dos S., & Torregrosa, J. (2026). Limit cycles in piecewise quadratic Kolmogorov systems. Communications in Nonlinear Science and Numerical Simulation, 152( Ja 2026), 1-16. doi:10.1016/j.cnsns.2025.109285
    • NLM

      Cruz LPC da, Oliveira RD dos S, Torregrosa J. Limit cycles in piecewise quadratic Kolmogorov systems [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-16.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109285
    • Vancouver

      Cruz LPC da, Oliveira RD dos S, Torregrosa J. Limit cycles in piecewise quadratic Kolmogorov systems [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-16.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109285
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES, SISTEMAS DISSIPATIVO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, Vinícius Tavares e LÓPEZ-LÁZARO, Heraclio e TAKAESSU JUNIOR, Carlos Roberto. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations. Communications in Nonlinear Science and Numerical Simulation, v. 152, n. Ja 2026, p. 1-12, 2026Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2025.109198. Acesso em: 05 nov. 2025.
    • APA

      Azevedo, V. T., López-Lázaro, H., & Takaessu Junior, C. R. (2026). Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations. Communications in Nonlinear Science and Numerical Simulation, 152( Ja 2026), 1-12. doi:10.1016/j.cnsns.2025.109198
    • NLM

      Azevedo VT, López-Lázaro H, Takaessu Junior CR. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-12.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109198
    • Vancouver

      Azevedo VT, López-Lázaro H, Takaessu Junior CR. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-12.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109198
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: IME

    Subjects: SISTEMAS DINÂMICOS, MECÂNICA CELESTE

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Vitor Martins de. Multistability and complexity in the planar spin-orbit problem. Communications in Nonlinear Science and Numerical Simulation, v. 150, n. artigo 109024, p. 1-13, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2025.109024. Acesso em: 05 nov. 2025.
    • APA

      Oliveira, V. M. de. (2025). Multistability and complexity in the planar spin-orbit problem. Communications in Nonlinear Science and Numerical Simulation, 150( artigo 109024), 1-13. doi:10.1016/j.cnsns.2025.109024
    • NLM

      Oliveira VM de. Multistability and complexity in the planar spin-orbit problem [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2025 ; 150( artigo 109024): 1-13.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109024
    • Vancouver

      Oliveira VM de. Multistability and complexity in the planar spin-orbit problem [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2025 ; 150( artigo 109024): 1-13.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109024
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: FFCLRP

    Subjects: SINGULARIDADES, SISTEMAS DINÂMICOS, SISTEMAS DIFERENCIAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Tiago de. Planar quartic–quadratic fold–fold singularity of Filippov systems and its bifurcation. Communications in Nonlinear Science and Numerical Simulation, v. 134, p. 1-31, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2024.108012. Acesso em: 05 nov. 2025.
    • APA

      Carvalho, T. de. (2024). Planar quartic–quadratic fold–fold singularity of Filippov systems and its bifurcation. Communications in Nonlinear Science and Numerical Simulation, 134, 1-31. doi:10.1016/j.cnsns.2024.108012
    • NLM

      Carvalho T de. Planar quartic–quadratic fold–fold singularity of Filippov systems and its bifurcation [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; 134 1-31.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108012
    • Vancouver

      Carvalho T de. Planar quartic–quadratic fold–fold singularity of Filippov systems and its bifurcation [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; 134 1-31.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108012
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Subjects: ATRATORES, MECÂNICA DOS FLUÍDOS, EQUAÇÕES DIFERENCIAIS PARCIAIS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ-LÁZARO, Heraclio e MARÍN-RUBIO, Pedro e PLANAS, Gabriela. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions. Communications in Nonlinear Science and Numerical Simulation, v. No 2024, p. 1-20, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2024.108204. Acesso em: 05 nov. 2025.
    • APA

      López-Lázaro, H., Marín-Rubio, P., & Planas, G. (2024). Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions. Communications in Nonlinear Science and Numerical Simulation, No 2024, 1-20. doi:10.1016/j.cnsns.2024.108204
    • NLM

      López-Lázaro H, Marín-Rubio P, Planas G. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; No 2024 1-20.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108204
    • Vancouver

      López-Lázaro H, Marín-Rubio P, Planas G. Non-Newtonian incompressible fluids with nonlinear shear tensor and hereditary conditions [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2024 ; No 2024 1-20.[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2024.108204
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Subjects: SISTEMAS HAMILTONIANOS, CAOS (SISTEMAS DINÂMICOS)

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAZAROTTO, Matheus Jean e CALDAS, Iberê Luiz e ELSKENS, Yves. Diffusion transitions in a 2D periodic lattice. Communications in Nonlinear Science and Numerical Simulation, v. 112, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2022.106525. Acesso em: 05 nov. 2025.
    • APA

      Lazarotto, M. J., Caldas, I. L., & Elskens, Y. (2022). Diffusion transitions in a 2D periodic lattice. Communications in Nonlinear Science and Numerical Simulation, 112. doi:10.1016/j.cnsns.2022.106525
    • NLM

      Lazarotto MJ, Caldas IL, Elskens Y. Diffusion transitions in a 2D periodic lattice [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2022 ; 112[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2022.106525
    • Vancouver

      Lazarotto MJ, Caldas IL, Elskens Y. Diffusion transitions in a 2D periodic lattice [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2022 ; 112[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2022.106525
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Subjects: FÍSICA MATEMÁTICA, BIOFÍSICA, GLIOMA, QUIMIOTERAPIA, NEOPLASIAS CEREBRAIS, EQUAÇÕES DIFERENCIAIS DA FÍSICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TROBIA, José et al. Mathematical model of brain tumour growth with drug resistance. Communications in Nonlinear Science and Numerical Simulation, v. 103, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2021.106013. Acesso em: 05 nov. 2025.
    • APA

      Trobia, J., Tian, K., Batista, A., Grebogi, C., Ren, H. -P., Santos, M. S., et al. (2021). Mathematical model of brain tumour growth with drug resistance. Communications in Nonlinear Science and Numerical Simulation, 103. doi:10.1016/j.cnsns.2021.106013
    • NLM

      Trobia J, Tian K, Batista A, Grebogi C, Ren H-P, Santos MS, Protachevicz RP, Borges FS, Szezech JD, Viana RL, Caldas IL, Iarosz KC. Mathematical model of brain tumour growth with drug resistance [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2021 ; 103[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2021.106013
    • Vancouver

      Trobia J, Tian K, Batista A, Grebogi C, Ren H-P, Santos MS, Protachevicz RP, Borges FS, Szezech JD, Viana RL, Caldas IL, Iarosz KC. Mathematical model of brain tumour growth with drug resistance [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2021 ; 103[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2021.106013
  • Source: Communications in Nonlinear Science and Numerical Simulation. Unidade: IF

    Subjects: BIOFÍSICA, REDES NEURAIS, PLASTICIDADE NEURONAL, SINAPSE, NEUROTRANSMISSORES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LAMEU, Ewandson Luiz et al. Short-term and spike-timing-dependent plasticity facilitate the formation of modular neural networks. Communications in Nonlinear Science and Numerical Simulation, v. 96, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2020.105689. Acesso em: 05 nov. 2025.
    • APA

      Lameu, E. L., Borges, F. S., Iarosz, K., Protachevicz, R. P., Antonopoulos, C. G., Macau, E. E. N., & Batista, A. (2021). Short-term and spike-timing-dependent plasticity facilitate the formation of modular neural networks. Communications in Nonlinear Science and Numerical Simulation, 96. doi:10.1016/j.cnsns.2020.105689
    • NLM

      Lameu EL, Borges FS, Iarosz K, Protachevicz RP, Antonopoulos CG, Macau EEN, Batista A. Short-term and spike-timing-dependent plasticity facilitate the formation of modular neural networks [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2021 ; 96[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2020.105689
    • Vancouver

      Lameu EL, Borges FS, Iarosz K, Protachevicz RP, Antonopoulos CG, Macau EEN, Batista A. Short-term and spike-timing-dependent plasticity facilitate the formation of modular neural networks [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2021 ; 96[citado 2025 nov. 05 ] Available from: https://doi.org/10.1016/j.cnsns.2020.105689

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025