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 A B S T R A C T

The tidal evolution of a deformable body may lead to a state where its rotational and orbital 
motion are in resonance. In this work, we numerically investigate and visually illustrate some 
dynamical properties of the dissipative spin–orbit problem, namely, the co-existence of multiple 
periodic and quasi-periodic attractors, and the complexity of the corresponding basins of 
attraction. We apply our methodology first to Hyperion, and later to the Moon and Mercury. 
Our results provide a visual aid to understand the complicated dynamics of the system, and 
show that the different dynamical scenarios in this problem can be well characterized by the 
Gibbs entropy.

. Introduction

Many natural satellites in the Solar System, including the Moon, possess an orbital period similar to their rotational period. These 
odies probably rotated much faster upon their formation and then went through a despinning process due to tidal interactions with 
heir massive companions [1,2], until eventually ending up in a synchronous rotation. Since the seminal work by Darwin [3], many 
uthors have studied the rotational dynamics of orbiting bodies under the effect of tidal forces [4–8].  These forces are stronger in 
rbiting bodies that are bigger or closer to the central body [9], but they can also lead to spin synchronization in small bodies such 
s secondaries of binary asteroids in the main belt [10].
The closest planet to the Sun, Mercury, is currently in a 3/2 spin–orbit resonance, i.e., it takes the same amount of time to rotate 

round its spin axis thrice as it takes to revolve around the Sun twice [11]. This discovery showed that a two-body system can be 
ocked into other configurations besides the synchronous one, which has lead to many works regarding the final state of tidally 
volved systems. In particular, an analytical probability for a planet or satellite to be captured into a spin–orbit resonance based 
n arguments about energy dissipation was derived [12], that was then reinterpreted in terms of Adiabatic Invariant Theory [13]. 
ater, it was showed that the chaotic evolution of Mercury’s orbit could have driven its orbital eccentricity high enough during the 
lanet’s history so that the probability of it ending up in its current state was actually higher than previously thought [14].
From a dynamical systems perspective, we can interpret the probability of a given trajectory being captured by a resonance as 

he probability of a random trajectory converging to a certain final state in the phase space. The final state is then an attractor in 
he system. In a system with multistability, i.e., many co-existing attractors, such concept can be related to the size of the basin of 
ttraction associated with each attractor [15,16].  For example, when tidal dissipation acts on a rotating triaxial body, the location 
f its Cassini states changes, and some of these solutions become attractors with their own basins of attraction [17]. Here, we 
re interested in visually illustrating and also quantifying the complexity of the basins of attraction in the spin–orbit problem. To 
arry on with this investigation, we choose a low-dimensional model of the problem which assumes that the orbiting body rotates 
erpendicularly to the orbit plane, and that it follows a Keplerian orbit with fixed parameters. We then determine the basins of 

∗ Correspondence to: Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, 05508-090, Brazil.
E-mail address: vitormo@ime.usp.br.
ttps://doi.org/10.1016/j.cnsns.2025.109024
eceived 24 June 2024; Received in revised form 20 May 2025; Accepted 27 May 2025
vailable online 16 June 2025 
007-5704/© 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/cnsns
https://www.elsevier.com/locate/cnsns
https://orcid.org/0000-0001-5274-849X
mailto:vitormo@ime.usp.br
https://doi.org/10.1016/j.cnsns.2025.109024
https://doi.org/10.1016/j.cnsns.2025.109024
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cnsns.2025.109024&domain=pdf


V.M. de Oliveira Communications in Nonlinear Science and Numerical Simulation 150 (2025) 109024 
Fig. 1. Schematic of the system. The body 𝐵2 orbits body 𝐵1 following a Keplerian orbit. 𝑓 is the true anomaly, 𝜃 the rotation angle, and 𝜓 = 𝜃 − 𝑓 .

attraction of the main resonances, and we measure their respective sizes and entropy for a range of orbital eccentricities. With this, 
we depict the intricate structure formed by the basins of attraction in the spin–orbit problem, and we evaluate how dominating the 
probability of converging to a final state is over the others via the Gibbs entropy, which are the main contributions of this work. 
Our results highlight the rich dynamical scenarios that may emerge from such a system.

This paper is organized as follows. In Section 2 we present the equations of motion for our physical model. Later, in Section 3 
we briefly expose the main ideas regarding the Gibbs entropy in our context. The dynamical analyses for Hyperion, the Moon, and 
Mercury are presented in Sections 4 and 5. Finally, in Section 6 we give some general remarks and state our conclusions.

2. Physical model

Our physical model consists in an orbiting body 𝐵2 that revolves around a central body 𝐵1 with the following considerations: 
the orbit is given by a fixed Keplerian ellipse with eccentricity 𝑒, semi-major axis 𝑎, mean motion 𝑛, and instantaneous radius 𝑟; 𝐵1
is a point mass whilst 𝐵2 is an extended triaxial body with principal moments of inertia 𝐴 < 𝐵 < 𝐶; the orbiting body’s spin-axis is 
parallel to 𝐶 and perpendicular to the orbit plane; and the only forces acting on 𝐵2 are due to the gravitational field generated by 
𝐵1. We illustrate the system in Fig.  1.

We are interested here in the rotational dynamics of 𝐵2, and in its relation to the body’s orbital motion. The position of the 
orbiting body along its trajectory may be determined by the true anomaly 𝑓 , and its rotation may be evaluated by the angle 𝜃
between the axis along 𝐴 (largest physical axis) and a coordinate axis fixed in the inertial space, which we take to intersect both the 
central body and the point of periapsis. We also consider that 𝐵1 raises a tide on the orbiting body, which we assume to be almost 
rigid. The time lag between the distortion of the body and the tide-raising potential is assumed to be constant [18,19], which leads 
to a dissipation function that is linear on the body’s relative angular velocity 𝜓̇ [20,21].

With the aforementioned considerations, we can derive an equation for the rotational dynamics of 𝐵2, which is given by1

𝐶𝜃̈ = −3
2
(𝐵 − 𝐴)

𝐺𝑚1

𝑟3
sin 2𝜓 − 𝛤

𝑟6
𝜓̇ , (1)

where 𝐺 is the gravitational constant and 𝑚1 is the mass of 𝐵1. The first term on the right-hand side of Eq. (1) is the gravitational 
torque due to the body’s triaxiality (𝐵 ≠ 𝐴), while the second term is the dissipative tidal torque caused by the deformation of 𝐵2. 
The orbital motion of 𝐵2 is embedded in the instantaneous radius 𝑟 and in the true anomaly 𝑓 , both of which are functions of time.

By rearranging the terms in Eq. (1) and defining the equatorial oblateness as 𝛾 = 3(𝐵 − 𝐴)∕2𝐶, our equation of motion can be 
rewritten as2

𝜃̈ = −𝛾
𝐺𝑚1

𝑟3
sin 2(𝜃 − 𝑓 ) −𝐾

(

𝐿𝜃̇ −𝑁
)

, (2)

where

𝐿 = 𝑎6

𝑟6
and 𝑁 = 𝑎8

𝑟8
𝑛
√

1 − 𝑒2,

and where we have used 𝑟2 ̇𝑓 = 𝑛𝑎2
√

1 − 𝑒2 [9]. We call 𝐾 the dissipation constant.
A spin–orbit resonance corresponds to a state where the number of orbits of 𝐵2 around 𝐵1, and the number of rotations of 𝐵2

around its spin-axis, are commensurable. If 𝑇  is the orbital period, a spin–orbit resonance (SOR) of type 𝑝∕𝑞 is a solution for the 
system such that [16] 

𝜃(𝑡 + 𝑇 𝑞) = 𝜃(𝑡) + 2𝜋𝑝 for all 𝑡 ∈ R, (3)

1 The constant 𝛤 is given by 3𝑘2𝐺𝑚2
1𝑅

5𝜏, where 𝑅 is the satellite’s radius, 𝜏 is the time lag, and 𝑘2 is the Love number [22].
2 The equation of motion for the planar dissipative spin–orbit problem is usually written in this manner since both 𝐿 and 𝑁 have simple time averages 

which are valid for small values of eccentricity [20]. In here, however, we use the non-averaged equation.
2 
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with 𝑝 and 𝑞 > 0 integers.
Spin–orbit resonances are, by definition, periodic orbits. If 𝐵2 is in one of these resonances, it expends the same amount of time 

to orbit around the central body 𝑞 times and to spin around itself 𝑝 times. For 𝐾 = 0, Eq. (2) describes an one-and-a-half degree 
of freedom near integrable conservative system, with both 𝛾 and 𝑒 as perturbation parameters. Therefore, the system can possess a 
mixed phase space, with the coexistence of regular and chaotic motion [23]. For 𝐾 > 0, some spin–orbit resonances may become
periodic attractors, being the final state of a set of trajectories with positive measure. We call the set of initial conditions that converge 
in time to a given attractor the basin of attraction of said solution [24].

Eq. (2) may also possess solutions of the form 
𝜃(𝑡) = 𝜔𝑡 + 𝑢(𝜔𝑡, 𝑡) for all 𝑡 ∈ R, (4)

where 𝜔 is irrational, and 𝑢(𝜑1, 𝜑2) is 𝑇 -periodic in 𝜑1 and 𝜑2. Such orbits form KAM curves in the conservative case and may 
become quasi-periodic attractors in the dissipative case [25].

In order to help us analyze the spin–orbit problem, we define a stroboscopic map 𝐌 which acts on the system’s phase space 
as (𝜃(𝑡), 𝜃̇(𝑡)) → (𝜃(𝑡 + 𝑇 ), 𝜃̇(𝑡 + 𝑇 )). With this definition, we reduce the three-dimensional continuous system to a two-dimensional 
autonomous discrete system. Note that the spin–orbit resonances are represented on 𝐌 by periodic orbits with period 𝑞, while the 
quasi-periodic solutions are represented by one-dimensional curves.

The model presented in this Section is well established and was used to study spin–orbit coupling in many works [14,16,26,27]. 
The fact that it is a low-dimensional model gives us access to numerical tools that are capable of visually illustrating the dynamical 
properties of orbits in the phase space.

3. Entropy

The basin of attraction of a given attractor is the portion of the phase space whose initial conditions lead to orbits that converge 
to this attractor. Hence the size of the basin of attraction can be interpreted as the probability of a random initial condition to 
belong in said basin. In multistable systems, multiple basins coexist and their basins compete for room in the phase space. In this 
situation, the individual basin sizes give the probability of a random initial condition to converge to each final state. Although very 
relevant, this information alone does not reflect how dynamically complex the phase space is. More specifically, it does not show 
how the phase space is divided among the basins.

In order to infer some information on that matter, we use the Gibbs entropy 𝑆, which is defined as [28] 

𝑆 =
𝑁𝐴
∑

𝑖=1
𝑝𝑖 ln

(

1
𝑝𝑖

)

, (5)

where 𝑁𝐴 is the number of attractors, and 𝑝𝑖 is the probability of a given orbit to belong to the basin of attraction of the 𝑖-th 
attractor.

The entropy 𝑆 assembles in a single number the information on how heterogeneous the basin sizes are. In particular, when all 
basins have the same size, 𝑝𝑖 = 𝑝 = 1∕𝑁𝐴, the entropy is maximum. In this situation, we obtain from Eq. (5)

𝑆𝑚𝑎𝑥 = ln𝑁𝐴. (6)

Conversely, if 𝑆 ≪ 𝑆𝑚𝑎𝑥, it means that one of the basins has a size much larger than all of the others. Hence, the entropy reflects how 
dominant an attractor may be in the phase space, i.e., how much more probable one final state is over the others. This information 
also takes into consideration the total number of attractors 𝑁𝐴 in the system, whose value might depend on the system parameters.

It is worth mentioning that a measure derived from 𝑆 called basin entropy was previously introduced by other authors [29]. This 
measure is dependent on the grid resolution utilized to analyze the phase space, and it can be used to obtain information on basin 
boundaries and for classifying basins of attraction [30]. For example, it can determine an uncertainty exponent which is related to 
the fractality of the basin boundaries [29,31]. Here, we use 𝑆 itself as a measure for the system’s complexity.

4. Hyperion

Hyperion is a moon of Saturn that has long been considered the primary example in the Solar System of a body possibly exhibiting 
a chaotic rotational state [26,32].3 This natural satellite has a highly aspherical shape, being nearly twice as long as it is across, 
with orbital eccentricity and equatorial oblateness given by 𝑒ℎ𝑦𝑝 = 0.1 and 𝛾ℎ𝑦𝑝 = 0.396, respectively [34]. In this section, we adopt 
these parameters in order to study the spin–orbit problem.

We carry out our investigation by integrating Eq. (2). For all of our simulations, we begin the orbital motion of the satellite 
at periapsis, i.e., 𝑓 (𝑡 = 0) = 0 and 𝑟(𝑡 = 0) = 𝑎(1 − 𝑒), and we calculate 𝑟(𝑡) by integrating Newton’s gravitational equation at each 
time-step. We also take 𝑎 = 1 and 𝑇 = 2𝜋, which leads to 𝑛 = 1 and 𝐺𝑚1 = 1. Numerical integration is performed via an explicit 
embedded Runge–Kutta Prince-Dormand 7(8) scheme with adaptive step-size control [35].

3 A recent study using a more general model which does not impose planar or principal axis rotation suggests that Hyperion is not tumbling chaotically, but 
rather rotating quasi-regularly [33].
3 
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Fig. 2. Hyperion’s phase space with the main SORs. 1/1 stable (black), 2/1 stable (red), 1/2 stable (dark blue), 2/2 unstable (green), 3/2 unstable (yellow), 
5/2 stable (light blue), 5/2 unstable (pink), and 9/4 stable (orange).

4.1. Conservative scenario

Let us first consider the case where Hyperion is treated as a rigid body and, consequently, there is no tidal dissipation in the 
satellite’s rotation. In this case, we have 𝐾 = 0, and the gravitational torque is the only term present in Eq. (2). Fig.  2 shows the 
system’s phase space 𝜃× 𝜃̇ calculated on the stroboscopic map 𝐌, from where we can observe a typical near-integrable Hamiltonian 
system scenario, with regions of regular motion coexisting with chaos.

The location of a few low-order spin–orbit resonances (SORs) are also marked in Fig.  2 by colored points. We determine these 
periodic orbits with an accuracy of ∼ 10−10 using a numerical routine to select good candidates in the phase space, along with an 
iterative minimization procedure [36]. For a SOR of type 𝑝∕𝑞, the value of 𝑞 reflects the period of the orbit on 𝐌, while 𝑝 is the 
number of rotations measured outside the surface of section after 𝑞 intersections.

The stability of the periodic orbits in Fig.  2 is determined via linear stability analysis. Since the stroboscopic map is well defined, 
we can numerically calculate the Jacobian matrix of the mapping after 𝑞 iterations, for which a periodic orbit of period 𝑞 is a fixed 
point. For the conservative case, the eigenvalues of the Jacobian matrix are complex numbers if the fixed point is stable, while they 
are real numbers if the fixed point is unstable. Later, when dissipation is considered, the stability of the periodic orbit will be given 
by the magnitude of these eigenvalues [24].

We are interested in understanding how the phase space changes as we vary the physical parameters of the system. In Fig.  3, 
we present the phase space for different values of the orbital eccentricity 𝑒 inside a given range. All panels were generated using 
the same initial conditions, which are marked by green dots. What we observe is the system going from a pendulum-like regular 
motion to a mixed phase space as the value is increased. During this process, some SORs bifurcate, changing stability, and regions 
of regular motion vary in size. For even larger values of 𝑒, the depicted region of the phase space is almost fully covered by chaotic 
orbits.4

4.2. Time series with tidal dissipation

When we consider Hyperion as an almost rigid body, tidal dissipation comes into play and some of the spin–orbit resonances 
become attractors. However, as we showed in Fig.  3, the system’s dynamical scenario vastly changes as we vary the orbital 
eccentricity. In Fig.  4, the evolution of the angular velocity 𝜃̇ is shown as a function of the number of orbital periods 𝑇𝑛 (the 
unity of time in 𝐌) for different values of 𝑒, and for the same initial condition in all cases, namely, 𝜃(0) = 0.0 and 𝜃̇(0) = 1000.0
rad/u.t., where u.t. stands for unit of time (i.e., Hyperion facing Saturn while rapidly spinning). We choose a dissipation constant of 
𝐾 = 10−2, a value which is high enough so we may observe the effects that tidal dissipation has on the system in a reasonable amount 
of simulation time, and low enough so that the interesting dynamical phenomena are not totally suppressed by the dissipation.

Two conclusions can be taken from Fig.  4. First, the discrete-time series is composed by three parts: an exponential decay, an 
erratic motion, and an asymptotic state corresponding to a resonance. Second, varying the value of the eccentricity affects the 
time series mostly in two manners: it changes the slope corresponding to the initial exponential decay, and it possibly modifies 
the system’s final state, i.e., to which SOR the trajectory eventually converges. The chaotic nature of the conservative phase space 
translates as chaotic transients when dissipation is considered. This can be seen in the erratic portion of the time series in Fig.  4. 

4  An investigation on the resonances in this model is carried out in Ref. [37] for low orbital eccentricities (𝑒 = 0.01 and 𝑒 = 0.02) and different values of the 
equatorial oblateness (𝛾 ∈ [0.0, 1.125]), where a comparison between an analytical approach via perturbative treatments and a numerical approach via dynamical 
indicators is performed.
4 
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Fig. 3. Phase space for 𝛾 = 𝛾ℎ𝑦𝑝, 𝐾 = 0, and different values of 𝑒. The initial conditions chosen for these figures are marked by green dots.

Hence, the system still exhibits sensitive dependence on initial conditions, i.e., initial conditions that are close together can lead to 
very different trajectories, which might converge to different SORs [15].

Chaotic orbits can also mimic dynamical aspects of unstable periodic orbits inside the chaotic sea for a limited amount of time. 
Consequently, a trajectory on the phase space can become temporarily trapped around attractors during its chaotic transient. In 
order to illustrate this behavior, we show the phase space trajectory in Fig.  5 that corresponds to the time series for 𝑒 = 0.140 in Fig. 
4. The orbit is superimposed in the conservative phase space for reference, and the colorbar indicates the number of orbital periods 
𝑇𝑛 (discrete time) for each point in the orbit. At about 𝑇𝑛 = 1000 (red points), the trajectory approaches a 1∕1 SOR and starts to 
revolve around it. However, instead of converging to this resonance, the orbit moves away and eventually converges to a 5∕4 SOR 
(yellow points).

Both dynamical aspects mentioned before, namely, sensitive dependence on initial conditions and temporary entrapment around 
periodic orbits, are related to invariant manifolds of unstable periodic orbits [38,39]. These geometrical structures permeate the 
5 
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Fig. 4. Discrete-time series for a trajectory on 𝐌 beginning at 𝜃(0) = 0.0 and 𝜃̇(0) = 1000.0 rad/u.t., 𝐾 = 10−2, 𝛾 = 𝛾ℎ𝑦𝑝, and different values of 𝑒.

Fig. 5. Phase space trajectory beginning at 𝜃(0) = 0.0 and 𝜃̇(0) = 1000.0 rad/u.t., for 𝐾 = 10−2, 𝛾 = 𝛾ℎ𝑦𝑝, and 𝑒 = 0.140 (black curve in Fig.  4). The color in 
each point of the orbit corresponds to the number of orbital periods 𝑇𝑛 as given by the colorbar. The conservative phase space is shown in the background for 
reference.

Table 1
Basin sizes and entropy for 𝑒 = 𝑒ℎ𝑦𝑝, 𝛾 = 𝛾ℎ𝑦𝑝, and 𝐾 = 10−2.

Basin size Entropy 
 1/1 2/1 1/2  
 89.94% 8.00% 2.06% 0.344  

phase space, bending and crossing each other, and render the system dynamics very complex. They also play an important role in 
the spin–orbit resonance capture, since they form the boundaries of the basins of attraction [31].

4.3. Basins of attraction for Hyperion

As defined before, the set of trajectories that converge in time to an attractor compose its basin of attraction. In order to visually 
illustrate the basins of attraction for Hyperion, we selected a square grid of 600 × 600 initial conditions in the phase space, evolved 
the equations of motion for each one, Eq. (2), and then determined their final state, later associating a color to each type of SOR. 
The results are shown in Fig.  6. The basin sizes, which are based on the number of points on the grid that compose each of them, 
along with the system entropy, are presented in Table  1. Here, there are three SORs, namely, 1∕1, 1∕2, and 2∕1, and it is possible 
to observe two aspects: the boundaries between the basins are complex, as indicated by the fine visual structures in the figure, and 
the basin of the synchronous resonance (1∕1 SOR) dominates the phase space, as indicated by the low entropy.

The information on Fig.  6 and Table  1 indicate that, if Hyperion’s orbital eccentricity 𝑒ℎ𝑦𝑝 remains constant, the synchronous 
resonance is its most probable final rotational state, given that this attractor dominate the phase space. However, the complex 
boundaries between the basins suggest that a prediction is hard, and that any perturbation might eventually lead the trajectory to 
another SOR.
6 
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Fig. 6. Basins of attraction for Hyperion with dissipation constant given by 𝐾 = 10−2. The color code corresponds to the following SORs: 1/1 (black), 2/1 
(orange), and 1/2 (yellow). The locations of the SORs are marked with little green dots.

In Fig.  7, we maintain the values for 𝛾 and 𝐾 used in Fig.  6, and we calculate the basins of attraction of SORs for the same range 
of 𝑒 as in Fig.  3. For 𝑒 = 0, the 1∕1 SOR is the only resonance present and hence its basin of attraction (in black) completely fills the 
phase space. As the value for the orbital eccentricity is increased, other attractors appear along with their basins (multistability). It 
is possible to observe that the basins of attraction are intertwined with each other in the phase space, which highlights the complex 
dynamical scenario of the system. For 𝑒 = 0.2, the synchronous resonance has bifurcated (period-doubling), giving origin to a 2∕2
SOR (basin in gray). Note that the 2∕2 SOR is different from the 1∕1 SOR, since this solution only closes after the body fully rotates 
around itself two times, which takes two orbital periods.

By comparing Figs.  3 to 7, we are able to observe the effect the tidal dissipation has on the system. While most of the stable 
periodic orbits in the conservative case are destroyed when dissipation is applied, some of these become periodic attractors in the 
dissipative case, each with its own basin of attraction. For example, with 𝑒 = 0.06, the attractors are the 1∕1, 2∕1, 1∕2 and 4∕4
spin–orbit resonances, and with 𝑒 = 0.18, the attractors are the 1∕1, 1∕2, 5∕2, and 5∕4 SORs. Another comparison between the two 
cases can be made concerning stable and unstable invariant manifolds associated with unstable periodic orbits. These geometrical 
structures are embedded in the chaotic sea of the conservative case and their crossings lead to the chaotic behavior of nearby 
orbits. In the dissipative case, structures such as these form the boundaries between the basins, and their crossings are responsible 
for chaotic transients.

We are treating here different attractors that correspond to the same type of SOR as effectively the same attractor, i.e., we 
combine the basins of all attractors with the same 𝑝 and 𝑞. For example, if the orbiting body is in the synchronous solution, it only 
shows the same side to the central body. However, there is another synchronous solution, where the orbiting body would always 
show its other side to the central body. We consider both these final states to be the same since they lead to the same physical 
outcome.

In Fig.  8, we plot the size of the basins of attraction as a function of the orbital eccentricity 𝑒. We call higher-order (HO) 
resonances all SORs with 𝑝 > 9 or 𝑞 > 4. As observed in Fig.  7, the basin size for the synchronous resonance dominates for lower 
values of eccentricity (𝑒 ≤ 0.05). At 𝑒 = 0.01, in particular, the 3∕2 SOR exists, it is stable, and its basin of attraction has a small size. 
However, the basin for the synchronous resonance competes for space with other basins as the eccentricity increases, especially at 
𝑒 = 0.09 and 𝑒 = 0.14, where the probability of a random trajectory to converge to the 1∕1 spin–orbit resonance falls to approximately 
0.6 and 0.4, respectively. For these parameters, the 4∕4 SOR (𝑒 = 0.09), and the 5∕4 and 1∕2 SORs (𝑒 = 0.14) also become probable 
outcomes.

We also show in Fig.  8 the entropy at each orbital eccentricity. The most striking outcome is the correlation between the value 
of the system’s entropy and the basin size of the SOR with lowest order. As the orbital eccentricity changes, the entropy varies 
and such variation inversely follows the tendency of the 1∕1 SOR basin size. For 𝑒 > 0.18, the synchronous resonance is not stable 
anymore, and the entropy starts to follow the 2∕2 SOR. These results highlight the important role of lower order resonances in the 
system dynamics.

5. Moon & Mercury

We now apply our methodology to investigate the rotational dynamics of both the Moon and Mercury. As before, we adopt the 
system described in Section 2 as our model, and we numerically integrate the equations of motion given by Eq. (2). We set the 
orbital eccentricities of the Moon and Mercury as 𝑒𝑀𝑜𝑜𝑛 = 0.0549 and 𝑒𝑀𝑒𝑟𝑐𝑢𝑟𝑦 = 0.2056, and we choose a dissipation parameter of 
𝐾 = 10−4. In both cases, we adopted an equatorial oblateness of 𝛾 = 10−4.
7 
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Fig. 7. Basins of attraction for 𝐾 = 10−2, 𝛾 = 𝛾ℎ𝑦𝑝, and different values of 𝑒. The color code corresponds to the following SORs: 1/1 (black), 2/1 (orange), 1/2 
(yellow), 2/2 (gray), 3/2 (red), 4/2 (dark-green), 5/2 (pink), 4/4 (blue), 5/4 (violet), and 8/4 (green). The basin of higher-order resonances (𝑝 > 9 or 𝑞 > 4) is 
white, and the locations of the SORs are marked with little green dots.

5.1. Winding number

The main physical aspect that differentiates both the Moon and Mercury from Hyperion is that they possess a very spherical 
shape, which leads to a somewhat distinct dynamical scenario. In particular, we observe the presence of quasi-period attractors (see 
Eq. (4)). In order to distinguish between this type of solution and a spin–orbit resonance, we calculate the attractor’s winding number
𝜔, which is defined as 

𝜔 = lim
𝑛→∞

𝜃𝑛 − 𝜃0
𝑛

, (7)

for a given discrete-time orbit {𝜃 , 𝜃 ,…} in 𝐌.
0 1

8 



V.M. de Oliveira Communications in Nonlinear Science and Numerical Simulation 150 (2025) 109024 
Fig. 8. Size of the basins of attraction and entropy (red curve) as a function of the orbital eccentricity for 𝛾 = 𝛾ℎ𝑦𝑝 and 𝐾 = 10−2. HO stands for higher-order 
SORs (𝑝 > 9 or 𝑞 > 4).

Fig. 9. Attractors for (left) 𝑒 = 𝑒𝑀𝑜𝑜𝑛 and (right) 𝑒 = 𝑒𝑀𝑒𝑟𝑐𝑢𝑟𝑦. Blue dots mark 1∕1 SORs, yellow dots mark 3∕2 SORs, and the quasi-periodic attractors are formed 
by the black curves. Inlet graphs show a magnification of these solutions, whose winding numbers are given by 𝜔 ≈ 1.01788 for the Moon and 𝜔 ≈ 1.25584 for 
Mercury.

Fig. 10. Basins of attraction for (left) 𝑒 = 𝑒𝑀𝑜𝑜𝑛 and (right) 𝑒 = 𝑒𝑀𝑒𝑟𝑐𝑢𝑟𝑦. Dissipation constant and equatorial oblateness are given by 𝐾 = 10−4 and 𝛾 = 10−4, 
respectively. The color code corresponds to the following attractors: quasi-periodic (black), 1/1 (purple), and 3/2 (yellow). The locations of the SORs are marked 
with little green dots.

Periodic orbits have a rational winding number while KAM tori have an irrational winding number [40]. Therefore, it is possible 
to determine if an orbit converged to a periodic attractor or to a quasi-periodic attractor by measuring its winding number, and then 
determining to a certain precision if it corresponds to a rational or an irrational number. In Fig.  9, we present the attractors for the 
Moon (left) and for Mercury (right). While the system for 𝑒 = 𝑒𝑀𝑜𝑜𝑛 has a quasi-periodic attractor co-existing with the synchronous 
resonance (blue dots), for 𝑒 = 𝑒𝑀𝑒𝑟𝑐𝑢𝑟𝑦 the system has a quasi-periodic attractor co-existing with both the synchronous and the 3∕2
SOR (yellow dots).
9 
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Fig. 11. Basins of attraction for 𝐾 = 10−4, 𝛾 = 10−4, and different values of 𝑒. The color code corresponds to the following attractors: quasi-periodic (black), 1/1 
(purple), and 3/2 (yellow). The locations of the SORs are marked with little green dots.

5.2. Basins of attraction for Moon and Mercury

In Fig.  10, we present the basins of attraction for the Moon (left) and Mercury (right). Here we set a fixed step size for the 
numerical integration scheme, and we calculated the basin of attraction on a square grid of 300 × 300 initial conditions. The basin 
of the quasi-periodic attractor is shown in black, and the basins for the 1∕1 and 3∕2 SORs are painted purple and yellow, respectively.

While the Moon contains only the synchronous resonance besides the quasi-periodic attractor, which means that these are the 
only two final states available in the system, Mercury also contains the 3∕2 SOR. The associated basin sizes and entropy are shown 
in Table  2. Even though both situations present an intricate basin structure, the quasi-periodic attractor dominates the phase space 
for 𝑒 = 𝑒𝑀𝑒𝑟𝑐𝑢𝑟𝑦, and hence the entropy is smaller in comparison to the Moon, where the synchronous resonance also fills a large area 
of the phase space. We can also observe from Fig.  10 that, for Mercury, the basin of attraction associated with the quasi-periodic 
attractor separates the other two basins in the phase space, in the same manner as KAM tori act as barriers in the conservative 
system. With this, there is no basin boundary between the synchronous resonance and the 3/2 SOR for Mercury and, consequently, 
10 
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Table 2
Basin sizes and entropy for 𝛾 = 10−4, 𝐾 = 10−4, and the eccentricities of the 
Moon (𝑒𝑀𝑜𝑜𝑛) and Mercury (𝑒𝑀𝑒𝑟𝑐𝑢𝑟𝑦).

 e Basin size Entropy 
 1/1 3/2 Quasi-periodic  
 𝑒𝑀𝑜𝑜𝑛 22.13% 77.87% 0.529  
 𝑒𝑀𝑒𝑟𝑐𝑢𝑟𝑦 1.38% 1.17% 97.45% 0.136  

Fig. 12. Size of the basins of attraction for 𝐾 = 10−4 and 𝛾 = 10−4, where QP stands for quasi-periodic attractors. The entropy is shown in red.

a perturbed orbit inside the 3∕2 basin would have to go through the quasi-periodic basin before possibly reaching the synchronous 
basin.

In Fig.  11, we maintain 𝛾 = 10−4 and 𝐾 = 10−4, and we depict the basins of attraction for different values of 𝑒. As before, 
the basin of the quasi-periodic solutions are shown in black, while the basin for the synchronous resonance is painted purple, and 
the one for the 3∕2 SOR is painted yellow. The basin sizes and the corresponding entropy are shown in Fig.  12. For 𝑒 = 0.0, as 
expected, the synchronous resonance completely fills the phase space. For 𝑒 = 0.045, a quasi-periodic orbit appears and its basin 
dominates the phase space. As the orbital eccentricity is increased, the basin of the 3/2 SOR steadily grows, until finally covering all 
the phase space at 𝑒 = 0.285, where both the synchronous resonance and the quasi-periodic attractor disappear. After that, another 
quasi-periodic attractor appears along with its basin, which in turn competes for space with the 3/2 SOR basin.

6. Conclusions

In this work, we have visually illustrated the basins of attraction for the dissipative spin–orbit problem, considering the 
parameters of Hyperion at first, and later the parameters for the Moon and Mercury. In all cases, the basins presented an intricate 
structure, being highly intertwined with one another. The visual depiction of the system’s complexity was complemented by the 
Gibbs entropy in each case, a measure that reflects the heterogeneity of the basin sizes, and that was shown to be correlated to the 
dominant attractor in the phase space, i.e., the most probable final state in the system.

For Hyperion, the probability of a trajectory ending up in a synchronous rotation not only varies considerably as a function 
of the orbital eccentricity, but also the 1/1 SOR itself bifurcates and changes stability, rendering such final state impossible for 𝑒
higher than a critical value. For the Moon and Mercury, where the equatorial oblateness is lower, quasi-periodic attractors appear. 
For values of 𝑒 where both the synchronous solution and the 3/2 SOR exist, their basin of attraction are separated by the basin that 
belongs to the quasi-periodic attractor, which almost always dominate the phase space.

Even though the Gibbs entropy does not provide the full picture, knowing how heterogeneous the system’s phase space is could 
help us understand why a certain system is in a given state. For example, in our physical model, Mercury has a low entropy for its 
current parameters as a consequence of the large basin of attraction associated with a quasi-periodic attractor. This supports the 
idea that Mercury was probably captured in the 3∕2 spin–orbit resonance when it was in a dynamical configuration where the basin 
of such a resonance was larger [14].

It is also worth noting that the Gibbs entropy investigated here can be easily extended to higher-dimensional physical models, 
which is important since it is harder, if not impossible, to visually describe these types of systems. For example, the case of Mercury 
in the 3∕2 spin–orbit resonance considering a full three-dimensional model. Additionally, the Gibbs entropy is well suited for Monte-
Carlo simulations. Since it is a measure that combines the sizes of all the basins of attraction, when we estimate it via Monte-Carlo 
simulations it means we also have an estimation for all of the basin sizes. Hence, we can estimate all of the quantities of interest 
with one numerical procedure (see Appendix).

In the future, we intend to use a more realistic rheological model [7], and analyze how changes in the equatorial oblateness, 
which are due to long term variations of spin and tidal forces, might affect the topology of the basins of attraction.
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Table A.3
Basin sizes and entropy for 𝛾 = 10−4 and 𝑒 = 𝑒𝑀𝑜𝑜𝑛.
 K Basin size Entropy 
 1/1 3/2 QP Other SORs  
 10−4 21.64% 78.36% 0.522  
 10−5 0.91% 0.41% 98.68% 0.079  
 10−6 0.85% 0.61% 97.91% 0.63% 0.134  

Table A.4
Basin sizes and entropy for 𝛾 = 10−4 and 𝑒 = 𝑒𝑀𝑒𝑟𝑐𝑢𝑟𝑦.

 K Basin size Entropy 
 1/1 3/2 QP Other SORs  
 10−4 1.21% 1.27% 97.52% 0.133  
 10−5 0.94% 0.43% 98.28% 0.35% 0.105  
 10−6 0.54% 0.65% 97.07% 1.74% 0.187  

Fig. A.13. Entropy as a function of the total number of randomly selected orbits for 𝛾 = 10−4, 𝐾 = 10−6, (left) 𝑒 = 𝑒𝑀𝑜𝑜𝑛, and (right) 𝑒 = 𝑒𝑀𝑒𝑟𝑐𝑢𝑟𝑦..
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Appendix. Monte Carlo simulations for lower dissipation values

The dissipation constant sets the timescale for energy loss in the system. Lower values of 𝐾 means that orbits in the phase space
take longer to converge on average, and hence computational time can become prohibitive in this situation. However, it is often
possible to obtain results using Monte-Carlo simulations, since these require less initial conditions than over-the-grid calculation in
order to measure a given quantity. In fact, we did compare our results to Monte-Carlo simulations, for which we obtained similar
conclusions. A Monte-Carlo simulation is faster, but the uniform grid method allows us to visually depict the basins of attraction
more easily, which is the focus of our work.

5 https://doi.org/10.54499/UIDP/04564/2020.
6 https://doi.org/10.54499/UIDB/04564/2020.
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In Tables  A.3 (Moon) and A.4 (Mercury), we present the basin sizes and the entropy for values of 𝐾 equal and lower than the 
one adopted in Section 5. In each simulation, we selected initial conditions at random following a uniform distribution, evolved 
them in time, and calculated an estimative for the entropy for every new orbit. We then stopped the procedure if the entropy value 
changed less than 10−2 in a window of 1000 new orbits (see Fig.  A.13). In the regime of lower dissipation constant values, there 
are more stable solutions and, consequently, more basins of attraction that compete for space. However, in almost all scenarios, the 
basins of attraction of quasi-period attractors almost completely dominated the considered region of the phase space.

Data availability

Data will be made available on request.
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